Yıl: 2017 Cilt: 18 Sayı: 2 Sayfa Aralığı: 289 - 300 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES

Öz:
The quality of the graphene grown on the top and subside of copper substrate with different thicknesses was investigated. Graphenes were grown on the 9, 25, 150 and 250 μm thickness copper substrates with Low-Pressure CVD by using CH4 process gas. Copper substrates were examined through XRD/XRF analysis. Graphenes that are grown on the surface of the copper substrate were characterized by Raman spectrometer. The results show that the grain size calculated from XRD data is decreasing as the thickness increases except for 25 μm thick copper. Besides the micro-strain in the structure is increasing according to the thickness of substrate. Raman spectroscopy results show that the graphene grown on the top surface of the 9 μm thick substrate is purely single-layer. The other samples consist of not only single-layer graphene but also few-layer graphene domains. When we look at I2D/IG ratios for samples on the top surface of coppers, the graphene doping decreases together with increasing thickness of substrate. At the same time, graphenes on the copper subsurface have blueshift and higher FWMH values. It reveals there is a close relation between the graphene and the copper subsurface. The graphene grown on the top side of the 150 μm copper has the typical attribute of suspended single-layer graphene with the redshift of a narrow 2D peak and I2D/IG ≈ 4. In this study, the best sample is obtained on the top surface of the 150 μm thick copper substrate. The large single-layer graphene is depend on microstrain rather than grain orientation
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183-191.
  • [2] Slonczewski JC, Weiss PR. Band structure of graphite. Phys. Rev. 1958;109:272-279. [3] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-669.
  • [4] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • [5] Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner, RB, Weller BH. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009;3(2):301-306
  • [6] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8(1):323-327.
  • [7]Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, et al. Gate-variable optical transitions in graphene. Science. 2008;320(5873):206–209.
  • [8] Mueller T, Xia F, Avouris, P. Graphene photodedectors for high-speed optical communications. Nat. Photon. 2010;4:297-301.
  • [9] Schwierz F. Graphene transistors. Nat. Nanotechnol. 2010;5:487-496.
  • [10] Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P. The origins and limits of metal-graphene junction. Nat. Nanotechnol. 2011;5:179-184.
  • [11] Xia F, Farmer DB, Lin YM, Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010;10:715-718.
  • [12] Brownson DAC, Banks CE. Fabricating supercapacitors: highlighting the impact of and moieties. Chem. Commun. 2012.;48:1425-1427.
  • [13] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009;47(8):2049-2053.
  • [14] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010;22:3906-3924.
  • [15] Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011;13:20836-20843.
  • [16] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457-460.
  • [17] Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC. Production and processing of graphene and 2d crystals. Materialstoday. 2012;15(12):564-589.
  • [18] Wang C, Chen W, Han C, Wang G, Tang B, Tang C, et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Scientific Reports. 2014;4(4537):1- 5.
  • [19] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, et al. Lage area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9(1):30-35.
  • [20] Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008;93:113103(3).
  • [21] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706-710.
  • [22] Magnuson CW, Kong X, Ji H, Tan C, Li H, Piner R, et al. Copper oxide as a “self-cleaning” substrate for graphene growth. Journal of Materials Research. 2014;29(3):403-409.
  • [23] Luo ZT, Lu Y, Singer DW, Berck E, Somers LA, Goldsmith BR, et al. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater. 2011;23:1441-1447.
  • [24] Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, et al. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano. 2011;5(5):4014-4022.
  • [25] Gao L, Guest JF, Guisinger NP, Epitaxial graphene on Cu(111). Nano Lett. 2010;10:3512-3516.
  • [26] Straumanis ME, Yu LS. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase. Acta Cryst. 1969;A25:676-682.
  • [27] Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Twodimensional gas of massless dirac fermions in graphene. Nature. 2005;438:197-200.
  • [28] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385-388.
  • [29] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • [30] Taylor RE, Ho CY. Thermal expansion of solids. ASM International: Materials. 1998:273.
  • [31] Richardson HW. Copper compounds in ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH;2005.
  • [32] Mack E, Osterhof GG, Kraner HM. Vapor pressure of copper oxide and copper. J. Am. Chem. Soc. 1923;45(3):617-623.
  • [33] Yu Q, Liu X, Tang D. Extreme extensibility of copper foil under compound forming conditions. Scientific Reports. 2013;3(3556):1-6.
  • [34] Cullity DB. Elements of X-ray diffraction. Massachusetts: Addison-Wesley;1956.
  • [35] Suryanarayana C, Grant Norton M. X-Ray diffraction: A practical approach, Springer US; 1998.
  • [36] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Novoselov KS, Geim AK. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006;97:187401-197404.
  • [37] Tan PH, Deng Y, Zhao Q. Temperature-dependent raman spectra and anomalous raman phenomenon of highly oriented pyrolytic graphite. Phys. Rev. B. 1998;58:5435-439.
  • [38] Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Physics Reports. 2009;473:51-87.
  • [39] Basko DM, Piscanec S, Ferrari AC. Electron-electron interactions and doping dependence of the two-phonon raman intensity in graphene. Phys. Rev. B. 2009;80:165413-165422.
  • [40] Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, et al. Electromechanical resonators from graphene sheets. Science. 2007;315:490-493.
  • [41] Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 2007;143:47-57.
  • [42] Graf D, Molitor F. Spatially resolved raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007;7:238-242.
  • [43] Ni Z, Wang Y, Yu T, Shen Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008;1:273-291.
  • [44] Wang YY, Ni ZH, Shen ZX, Wang HM, Wu YH. Interference enhancement of raman signal of graphene. Appl. Phys. Lett. 2008;92:043121(3).
  • [45] Tang B, Guoxin H, Gao H. Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews. 2010;45(5):369-407.
  • [46] Zhen HN, Ting Y. Probing charged impurities in suspended graphene using raman spectroscopy. ACS Nano. 2009;3:569-574.
  • [47] Han MY, Özyılmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007;98:206805-206808.
  • [48] Wang YY, Ni ZH, Yu T, Wang HM, Wu YH, Chen W, et al. Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C. 2008;112:10637-10640.
  • [49] Calizo I, Bejenari I. Ultraviolet raman microscopy of single and multilayer graphene. J. Appl. Phys. 2009;106:043509-043513.
  • [50] Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, et al. Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008;3:210-215.
  • [51] Zhen HN, Ting Y, Yun HL. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano. 2008;2:2301-2305.
  • [52] Zhen HN, Hao MW, Yun M. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano. 2008;2:1033-1039.
  • [53] Calizo I, Balandin AA, Bao W, Miao F, Lau CN. Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett. 2007;7:2645-2469.
  • [54] Stephane B, Sunmin R, Louis E. Probing the intrinsic properties of exfoliated graphene: raman spectroscopy of free-standing monolayers. Nano Lett. 2009;9:346-352.
APA YILMAZ M, RAMAZAN EKER Y (2017). SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. , 289 - 300.
Chicago YILMAZ MÜCAHİT,RAMAZAN EKER Yasin SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. (2017): 289 - 300.
MLA YILMAZ MÜCAHİT,RAMAZAN EKER Yasin SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. , 2017, ss.289 - 300.
AMA YILMAZ M,RAMAZAN EKER Y SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. . 2017; 289 - 300.
Vancouver YILMAZ M,RAMAZAN EKER Y SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. . 2017; 289 - 300.
IEEE YILMAZ M,RAMAZAN EKER Y "SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES." , ss.289 - 300, 2017.
ISNAD YILMAZ, MÜCAHİT - RAMAZAN EKER, Yasin. "SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES". (2017), 289-300.
APA YILMAZ M, RAMAZAN EKER Y (2017). SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik, 18(2), 289 - 300.
Chicago YILMAZ MÜCAHİT,RAMAZAN EKER Yasin SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik 18, no.2 (2017): 289 - 300.
MLA YILMAZ MÜCAHİT,RAMAZAN EKER Yasin SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik, vol.18, no.2, 2017, ss.289 - 300.
AMA YILMAZ M,RAMAZAN EKER Y SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik. 2017; 18(2): 289 - 300.
Vancouver YILMAZ M,RAMAZAN EKER Y SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik. 2017; 18(2): 289 - 300.
IEEE YILMAZ M,RAMAZAN EKER Y "SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES." Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik, 18, ss.289 - 300, 2017.
ISNAD YILMAZ, MÜCAHİT - RAMAZAN EKER, Yasin. "SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES". Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik 18/2 (2017), 289-300.