Yıl: 2016 Cilt: 14 Sayı: 1 Sayfa Aralığı: 8 - 14 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds

Öz:
Bademe uygulanan kavurma sıcaklığı (130, 155 ve 180°C), kavurma süresi (5, 25 ve 45 dakika) ve kavrulmuş bademlerin depolama süresinin (0., 6. ve 12. ay) akrilamid içeriğine etkisi incelenmiş ve renk değişimi ile akrilamid oluşumu arasındaki ilişki de belirlenmiştir. Kavrulmuş bademlerin akrilamid içeriği sıvı kromatografisi (LC-DAD) ile tespit edilmiş ve örneklerin akrilamid içeriğinin 24.61 ile 882.10 ppb aralığında olduğu bulunmuştur. Bademlerin akrilamid içeriğinin kavurma sıcaklığı ve süresinin artışı ile arttığı, fakat 12 aylık depolama süresinde ise düştüğü belirlenmiştir. Altı aya kadar olan depolama süresinde akrilamid içeriğindeki düşüşün kalan zaman aralığına göre daha fazla olduğu gözlenmiştir. Yüksek kavurma sıcaklıkları ve uzun sürelerde düşük parlaklık (L*) değerleri elde edilmiştir. Yüksek sıcaklık ve süre uygulamalarında daha yüksek a* ve b* değerleri elde edilmiştir. L* değeri 50'den düşük ve a* değeri 12'den yüksekken, bademlerin akrilamid içerikleri 200 ppb'den yüksek bulunmuştur. L* ve a* değerleri bademlerin kavrulması esnasında, kavurma sıcaklık ve sürelerinin sınırlandırılmasının öngörülmesi amacı ile hızlı kontrol parametreleri olarak önerilebilir.
Anahtar Kelime:

Konular: Gıda Bilimi ve Teknolojisi

Kavurma Şartları ve Depolamanın Bademlerin Akrilamid İçeriği ve Rengi Üzerine Etkisi

Öz:
In this study, the effect of roasting temperature (130, 155 and 180°C), roasting time (5, 25 and 45 minutes) and storage (0., 6. and 12. month) on the acrylamide content of almonds was determined, and the relation between acrylamide formation and changes in colour (CIE L*, a* and b*) was investigated. Acrylamide contents of roasted almonds determined by liquid chromatography coupled to diode array detector (LC-DAD) ranged from 24.61 to 882.10 ppb. Acrylamide formation increased by an increase in roasting temperature and time; however, acrylamide contents of roasted almonds reduced during storage up to 12 months. The degree of this reduction in the first 6 months of storage was higher than that the second 6 months of storage. At high roasting temperatures and for long roasting times, the lightness values of almonds (L*) decreased while colour values of a* and b* increased. Colour L* value lower than 50 and a* value higher than 12 were found in roasted almonds while acrylamide contents of almonds were higher than 200 ppb. Colour L* and a* values may be recommended as rapid quality control parameters for the estimation of the adequate roasting time and temperature during roasting processing of almonds.
Anahtar Kelime:

Konular: Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Gökmen, V., Şenyuva, H.Z., Acar, J., Sarıoğlu K., 2005. Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. Journal of Chromatography A 1088: 193-199.
  • [2] Manson, J., Brabec, M.J., Buelke-Sam, J., Carlson, G.P., Chapin, R.E., Favor, J.B., Fischer, L.J., Hattis, D., Lees, P.S.J., Perreault-Darney, S., Rutledge, J., Smith, T.J., Tice, R.R., Working, P., 2005. NTPCERHR expert panel report on the reproductive and developmental toxicity of acrylamide. Birth Defects Research (Part B) 74: 17-113.
  • [3] Keramat, J., Lebail, A., Prost, C., 2011. Acrylamide in foods: chemistry and analysis. A review. Food Bioprocess Technology 4: 340-363.
  • [4] Cengiz, M.F., Gündüz, C.P.B., 2013. Acrylamide exposure among Turkish toddlers from selected cereal-based baby food samples. Food and Chemical Toxicology 60: 514-519.
  • [5] Gökmen, V., 2014. A perspective on the evaluation of safety risks in thermal processing of foods with an example for acrylamide formation in biscuits. Quality Assurance and Safety of Crops and Foods 6: 319-325.
  • [6] Becalski, A., Lau, B.P.Y., Lewis, D., Seaman, S.W., 2003. Acrylamide in foods: occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry 51: 802-808.
  • [7] Mottram, D.S., Wedzicha, B.L., Dodson, A.T., 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448-449.
  • [8] Friedman, M., 2003. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural Food Chemistry 51: 4504-4526.
  • [9] Gökmen, V., Palazoğlu, T.K., 2008. Acrylamide formation in foods during thermal processing with a focus on frying. Food and Bioprocess Technology 1: 35-42.
  • [10] Yaylayan, V.A., Perez Locas, C., Wnorowski, A., O'Brien, J., 2004. The role of creatine in the generation of N-methylacrylamide: a new toxicant in cooked meat. Journal of Agricultural and Food Chemistry 52: 5559-5565.
  • [11] Stadler, R.H., Verzegnassi, L., Varga, N., Grigorov, M., Studer, A., Riediker, S., Schilter, B., 2003. Formation of vinylogous compounds in model Maillard reaction systems. Chemical Research in Toxicology 16: 1242-1250.
  • [12] Sohn, M., Ho, C.T., 1995. Ammonia generation during thermal degradation of amino acids. Journal of Agricultural and Food Chemistry 43: 3001-3003.
  • [13] Wnorowski, A., Yaylayan, V.A., 2003. Monitoring carbonylamine reaction between pyruvic acid and ?- amino alcohols by FTIR spectroscopy, a possible route to Amadori products. Journal of Agricultural and Food Chemistry 51: 6537-6543.
  • [14] Zyzak, D.V., Sandres, R.A., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L., Ewald, D.K., Gruber, D.C., Morsch, T.R., Strothers, M.A., Rizzi, G.P., Villagran, M.D., 2003. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry 51: 4782-4787.
  • [15] Stadler, R.H., Robert, F., Riediker, S., Varga, N., Davidek, T., Devaud, S., Goldmann, T., Hau, J., Blank, I., 2004. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. Journal of Agricultural and Food Chemistry 52: 5550-5558.
  • [16] Stadler, R.H., Scholz, G., 2004. Acrylamide: an update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutrition Reviews 62: 449-467 . [17] Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., Trnqvist, M., 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50: 4998-5006.
  • [18] Zhang, Y., Zhang, Y., 2007. Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Critical Reviews in Food Science and Nutrition 47: 521-542.
  • [19] Amrein, T.M., Bachmann, S., Noti, A., Biedermann, M., Barbosa, M.F., Biedermann-Brem, S., Schönbächler, B., Escher F., Amadò, R., 2004. Acrylamide in gingerbread: critical factors for formation and possible ways for reduction. Journal of Agricultural and Food Chemistry 52: 4282-4288.
  • [20] Biedermann, M., Noti, A., Biedermann-Brem, S., Mozzetti, V., Grob, K., 2002. Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 93: 668-687.
  • [21] Fiselier, K., Grob, K., 2005. Legal limit for reducing sugars in prefabricates targeting 50 ?g/kg acrylamide in French fries. Europe Food Research Technology 220: 451-458.
  • [22] Elmore, J.S., Koutsidis, G., Dodson, A.T., Mottram, D.S., Wedzicha, B.L., 2005. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. Journal of Agricultural Food Chemistry 53: 1286-1293.
  • [23] Cook, D.J., Taylor, A.J., 2005. On-line MS/MS monitoring of acrylamide generation in potato- and cereal-based systems. Journal of Agricultural and Food Chemistry 53: 8926-8933.
  • [24] Konings, E.J.M., Baars, A.J., Van Klaveren, J.D., Spanjer, M.C., Rensen, P.M., Hiemstra, M., Van Kooij, J.A., Peters, P.W.J., 2003. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chemistry Toxicology 41: 1569-1579.
  • [25] Ruggeri, S., Cappelloni, M., Gambelli, L., Nicoli, S., Carnovale, E., 1998. Chemical composition and nutritive value of nuts grown in Italy. Italian Journal of Food Science 10: 243-252.
  • [26] Seron, L.H, Poveda, E.G., Prats, M.M.S., Carratala, M.L.M., Berenguer-Navarro, V., Gran´e-Teruel, N., 1998. Characterisation of 19 almond cultivars on the basis of their free amino acids composition. Food Chemistry 61: 455-459.
  • [27] Amrein, T.M., Andres, L., Schönbächler, B., CondePetit, B., Escher, F., Amadò, R., 2005a. Acrylamide in almond products. Europe Food Research Technology 221: 14-18.
  • [28] Amrein, T.M., Lukac, H ., Andres, L., Perren, R., Escher, F., Amadò, R., 2005b. Acrylamide in roasted almonds and hazelnuts. Journal Agricultural and Food Chemistry 53: 7819-7825.
  • [29] Delatour, T., Perisset, A., Goldmann, T., Riediker, S., Stadler, R.H., 2004. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectrometry. Journal of Agricultural and Food Chemistry 52: 4625-4631.
  • [30] Hoenicke, K., Gatermann, R., 2004. Stability of acrylamide in food during storage. Czech Journal of Food Sciences 22: 355-356.
  • [31] Andrzejewski, D., Roach, J.A., Gay, M.L., Musser, S.M., 2004. Analysis of coffee for the presence of
  • [32] Gülcan, R., 1985. Almond descriptors. International Board for Plant Genetic Resources Secretariat, Rome. p. 30.
  • [33] Weisshaar, R., 2004. Acrylamide in bakery' products-results from model experiments. Deutsche Lebensmittel-Rundschau 100: 92-97.
  • [34] Taeymans, D., Wood, J., Ashby, P., Blank, I., Studer, A., Stadler, R.H., Gonde, P., Eijck, P., Lalljie, S., Lingnert, H., Lindblom, M., Matissek, R., Muller, D., Tallmadge, D., O'Brien, J., Thompson, S., Silvani, D., Whitmore, T., 2004. A review of acrylamide: an industry perspective on research, analysis, formation, and control. Critical Reviews in Food Science and Nutrition 44: 323-347.
  • [35] Granby, K., Fagt, S., 2004. Analysis of acrylamide in coffee and dietary exposure to acrylamide from coffee. Analytica Chimica Acta 520: 177-182.
APA ÜNVER A (2016). Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. , 8 - 14.
Chicago ÜNVER Ahmet Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. (2016): 8 - 14.
MLA ÜNVER Ahmet Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. , 2016, ss.8 - 14.
AMA ÜNVER A Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. . 2016; 8 - 14.
Vancouver ÜNVER A Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. . 2016; 8 - 14.
IEEE ÜNVER A "Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds." , ss.8 - 14, 2016.
ISNAD ÜNVER, Ahmet. "Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds". (2016), 8-14.
APA ÜNVER A (2016). Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. Akademik Gıda, 14(1), 8 - 14.
Chicago ÜNVER Ahmet Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. Akademik Gıda 14, no.1 (2016): 8 - 14.
MLA ÜNVER Ahmet Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. Akademik Gıda, vol.14, no.1, 2016, ss.8 - 14.
AMA ÜNVER A Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. Akademik Gıda. 2016; 14(1): 8 - 14.
Vancouver ÜNVER A Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds. Akademik Gıda. 2016; 14(1): 8 - 14.
IEEE ÜNVER A "Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds." Akademik Gıda, 14, ss.8 - 14, 2016.
ISNAD ÜNVER, Ahmet. "Effect of Roasting Conditions and Storage on Acrylamide Content and Colour of Almonds". Akademik Gıda 14/1 (2016), 8-14.