Yıl: 2012 Cilt: 49 Sayı: 4 Sayfa Aralığı: 294 - 299 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence

Öz:
Amaç: Alzheimer Hastalığı (AH) ileri yaşlarda kendini demansla gösteren etyolojisi henüz net olarak tanımlanmamış nörolojik bir hastalıktır. Sinaptik bölgede çok sayıda molekül salınmaktadır. Salınan bu moleküllerin AH hastalığı üzerindeki etkisi net olarak tanımlanmamıştır. Çalışmamızın amacı; sinaptik vezikül proteinleri (synaptobrevin (VAMP2), synapsin III) ile presinaptik plazma membran (syntaxin 1A, SNAP-25) proteinleri genetik polimorfizmleri ile AH arasındaki ilişkinin araştırılmasıdır. Yöntem: Araştırmamızda, VAMP2, synapsin III, syntaxin 1A ve SNAP-25 genleri polimorfizmleri 68 AH ve 78 kontrol bireyde analiz edilmiştir. DNA izolasyonu için tuz çöktürme yöntemi, genotipleme için ise, PCR-RFLP yöntemleri kullanılmıştır. Çalışmamamızda, VAMP2, synapsin III, syntaxin 1A ve SNAP-25 genleri polimorfizmleri genotiplendirilmiştir. Bulgular: Araştırmamızın sonucunda; Synapsin III geni rs 133945 polimorfizmi ile Alzheimer hastalığı arasında anlamlı bir ilişki tespit edilmiştir. G/A genotipinin Alzheimer hastalığı açısından koruyucu etkisi olduğu belirlenmiştir (p=0.008). Ayrıca, Synapsin III geni rs 133946 polimorfizmi için; Allel sayıları ile gruplar arasında istatistiksel olarak anlamlı ilişki vardır. G alleline sahip olan bireyler C alleline sahip olan bireylere oranla 1,5 kat daha risk altında olduğu tespit edilmiştir. Syntaxin 1A geni exon 3 polimorfizmi ile AH arasında belirgin bir ilişki tespit edilmiştir. Talleline sahip olan bireylerin C alleline sahip olanlara oranla 1.7 oranında AH için risk altında olduğu tespit edilmiştir. Synapsin III, SNAP-25 genleri polimorfizmleri arasında linkage disequilibrium tespit edilmiş ve haplotip analizi yapılmıştır. Sonuç: Araştırmamız sonucunda; VAMP2, synapsin III, syntaxin 1A ve SNAP-25 genleri polimorfizmlerinin AH üzerinde etkili olabileceği öne sürülmektedir. (Nöropsikiyatri Arflivi 2012; 49: 294-299)
Anahtar Kelime:

Konular: Nörolojik Bilimler Psikiyatri

Alzheimer hastalığında sinaptik vezikul ve presinaptik plazma membran proteinlerinin genetik varyantları

Öz:
Background: Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and its etiology is still not fully understood. The aim of this study was to analyze the role of the genetic variants of two synaptic vesicle proteins (VAMP2, synapsin III) and two presynaptic plasma membrane proteins (syntaxin 1A, SNAP-25) in AD patients. We analyzed the functional polymorphisms of VAMP2, synapsin III, syntaxin 1A, and SNAP-25 genes. Method: Sixty-eight adult patients with Alzheimer disease and Seventy-eight healthy adults were included in the study. DNA was extracted from whole blood by the salting out procedure. We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. We determined alleles and the genotypes of polymorphism of VAMP2, synapsin III, SNAP-25 and syntaxin 1A genes. Results: We observed significant differences in the genotypic distribution of the Synapsin III rs 133945 polymorphism for AD compared with that in controls. Also, we found significant differences in the allelic distribution of the Synapsin III rs 133946 polymorphism for AD compared with controls. We have found that individuals who have G alleles are 1.5 times more at risk of developing AD than those with C alleles. Exon 3 polymorphism of syntaxin 1A gene is associated with AD. Individuals who have T alleles are 1.7 times more at risk of developing AD than those with C alleles. In addition, result of logistic regression analysisSNAP-25 and Synapsin III is significant in relevance with AD. Conclusion: The present results indicate the possible contribution of VAMP2, synapsin III, syntaxin 1A and SNAP-25 gene polymorphisms to AD. (Archives of Neuropsychiatry 2012; 49: 294-299)
Anahtar Kelime:

Konular: Nörolojik Bilimler Psikiyatri
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Matthews F, Brayne C; Medical Research Council Cognitive Function and Ageing Study Investigators. The incidence of dementia in England and Wales: findings from the five identical sites of the MRC CFA Study. PLoS Med 2005; 2:e193.
  • 2. Parodi J, Sepúlveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG. Betaamyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 2010; 285:2506-2514.
  • 3. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81;741-766.
  • 4. Cruts M, Van Broeckhoven C. Molecular genetics of Alzheimer’s disease. Ann Med 1998; 30:560-565.
  • 5. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006; 63:168-174.
  • 6. Ball MJ, Fisman M, Hachinski V, Blume W, Fox A, Kral VA, Kirshen AJ, Fox H, Merskey H. New definition of Alzheimer's disease: a hippocampal dementia. Lancet 1985; 5:14-16.
  • 7. Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR. Perforant pathway changes and the memory impairment of Alzheimer's disease. Ann Neurol 1986; 20:472-481.
  • 8. Shimohama S, Kamiya S, Taniguchi T, Akagawa K, Kimura J. Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer's disease. Biochem Biophys Res Commun 1997; 236:239-242.
  • 9. Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer's disease brains. J Neurol Sci 2000; 175:81-90.
  • 10. Schubert V, Bouvier D, Volterra A. SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 2011; 59:1472-1488.
  • 11. Weis WI, Scheller RH. Membrane fusion. SNARE the rod, coil the complex. Nature 1998; 395:328–329.
  • 12. Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 2004; 24:11368-11380.
  • 13. De Camilli P, Harris SM Jr, Huttner WB, Greengard P. Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agaroseembedded synaptosomes. J Cell Biol 1983; 96:1355-1373.
  • 14. Murphy BC, O'Reilly RL, Singh SM. DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia. BMC Med Genet 2008; 9:115.
  • 15. Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Häring M, Benfenati F, Greengard P. Third member of the synapsin gene family. Proc Natl Acad Sci U S A 1998; 95:4667-4672.
  • 16. Bennett MK, Calakos N, Scheller RH. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992; 257:255-259.
  • 17. Hodel A. SNAP-25. Int J Biochem Cell Biol 1998; 30:1069-1073.
  • 18. Söllner TH. Regulated exocytosis and SNARE function. Mol Membr Biol 2003; 20:209–220.
  • 19. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362:318–324.
  • 20. Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000; 5:405-409.
  • 21. Falbo V, Floridia G, Gaudi S, Zoraqi G, Taruscio D. A new polymorphism in the flanking region of human VAMP2 and hPer1 genes. Mol Cell Probes 2002; 16:391-392.
  • 22. Liguori M, Cittadella R, Manna I, Valentino P, La Russa A, Serra P, Trojano M, Messina D, Ruscica F, Andreoli V, Romeo N, Livrea P, Quattrone A. Association between Synapsin III gene promoter polymorphisms and multiple sclerosis. J Neurol 2004; 251:165-170.
  • 23. Wong AH, Trakalo J, Likhodi O, Yusuf M, Macedo A, Azevedo MH, Klempan T, Pato MT, Honer WG, Pato CN, Van Tol HH, Kennedy JL. Association between schizophrenia and the syntaxin 1A gene. Biol Psychiatry 2004; 56:24-29.
  • 24. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984; 34:939-944.
  • 25. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215.
  • 26. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y. A partition-ligationcombination- subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res 2009; 19:519-523.
  • 27. Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM. Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 2004; 165:1809-1817.
  • 28. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572-580.
  • 29. Olson AL, Knight JB, Pessin JE. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1997; 17:2425–2435.
  • 30. Schoch S, Deák F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001; 294:1117-11122.
  • 31. Saito S, Takahashi N, Ishihara R et al. Association study between vesicleassociated membrane protein 2 gene polymorphisms and fluvoxamine response in Japanese major depressive patients. Neuropsychobiology 2006; 54:226-230.
  • 32. Kawashima K, Kishi T, Ikeda M, Kitajima T, Yamanouchi Y, Kinoshita Y, Takahashi N, Saito S, Ohi K, Yasuda Y, Hashimoto R, Takeda M, Inada T, Ozaki N, Iwata N. No association between tagging SNPs of SNARE complex genes (STX1A, VAMP2 and SNAP25) and schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1327-1331.
  • 33. Murphy BC, O'Reilly RL, Singh SM. DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia. BMC Med Genet. 2008; 9:115.
  • 34. Feng J, Chi P, Blanpied TA, Xu Y, Magarinos AM, Ferreira A, Takahashi RH, Kao HT, McEwen BS, Ryan TA, Augustine GJ, Greengard P. Regulation of neurotransmitter release by synapsin III. J Neurosci 2002; 22:4372-4380.
  • 35. Ohmori O, Shinkai T, Hori H, Kojima H, Nakamura J. Synapsin III gene polymorphisms and schizophrenia. Neurosci Lett 2000; 279:125-127.
  • 36. Tsai MT, Hung CC, Tsai CY, Liu MY, Su YC, Chen YH, Hsiao KJ, Chen CH. Mutation analysis of synapsin III gene in schizophrenia. Am J Med Genet 2002; 114:79-83.
  • 37. Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 1995; 375:645-653.
  • 38. Bezprozvanny I, Scheller RH, Tsien RW. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 1995; 378:623-626.
  • 39. Tsunoda K, Sanke T, Nakagawa T, Furuta H, Nanjo K. Single nucleotide polymorphism (D68D, T to C) in the syntaxin 1A gene correlates to age at onset and insulin requirement in Type II diabetic patients. Diabetologia 2001; 44:2092-2097.
  • 40. Lemos C, Pereira-Monteiro J, Mendonça D, Ramos EM, Barros J, Sequeiros J, Alonso I, Sousa A. Evidence of syntaxin 1A involvement in migraine susceptibility: a Portuguese study. Arch Neurol 2010; 67:422-427.
  • 41. Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M. Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 2002; 7:913-917.
  • 42. Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF. Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8:309-315.
  • 43. Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, Taylor E, Asherson P. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 2002; 114:269-271.
  • 44. Golimbet VE, Alfimova MV, Gritsenko IK, Lezheiko TV, Lavrushina OM, Abramova LI, Kaleda VG, Barkhatova AN, Sokolov AV, Ebstein RP. Association between a synaptosomal protein (SNAP-25) gene polymorphism and verbal memory and attention in patients with endogenous psychoses and mentally healthy subjects. Neurosci Behav Physiol 2010; 40:461-465.
  • 45. Söderqvist S, McNab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T. The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biol Psychiatry 2010; 68:1120-1125.
APA EDGÜNLÜ T, Özge A, YALIN O, KUL S, ERDAL M (2012). Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. , 294 - 299.
Chicago EDGÜNLÜ Tuba GÖKDOĞAN,Özge Aynur,YALIN Osman Ögür,KUL Seval,ERDAL Mehmet Emin Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. (2012): 294 - 299.
MLA EDGÜNLÜ Tuba GÖKDOĞAN,Özge Aynur,YALIN Osman Ögür,KUL Seval,ERDAL Mehmet Emin Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. , 2012, ss.294 - 299.
AMA EDGÜNLÜ T,Özge A,YALIN O,KUL S,ERDAL M Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. . 2012; 294 - 299.
Vancouver EDGÜNLÜ T,Özge A,YALIN O,KUL S,ERDAL M Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. . 2012; 294 - 299.
IEEE EDGÜNLÜ T,Özge A,YALIN O,KUL S,ERDAL M "Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence." , ss.294 - 299, 2012.
ISNAD EDGÜNLÜ, Tuba GÖKDOĞAN vd. "Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence". (2012), 294-299.
APA EDGÜNLÜ T, Özge A, YALIN O, KUL S, ERDAL M (2012). Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. Nöropsikiyatri Arşivi, 49(4), 294 - 299.
Chicago EDGÜNLÜ Tuba GÖKDOĞAN,Özge Aynur,YALIN Osman Ögür,KUL Seval,ERDAL Mehmet Emin Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. Nöropsikiyatri Arşivi 49, no.4 (2012): 294 - 299.
MLA EDGÜNLÜ Tuba GÖKDOĞAN,Özge Aynur,YALIN Osman Ögür,KUL Seval,ERDAL Mehmet Emin Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. Nöropsikiyatri Arşivi, vol.49, no.4, 2012, ss.294 - 299.
AMA EDGÜNLÜ T,Özge A,YALIN O,KUL S,ERDAL M Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. Nöropsikiyatri Arşivi. 2012; 49(4): 294 - 299.
Vancouver EDGÜNLÜ T,Özge A,YALIN O,KUL S,ERDAL M Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence. Nöropsikiyatri Arşivi. 2012; 49(4): 294 - 299.
IEEE EDGÜNLÜ T,Özge A,YALIN O,KUL S,ERDAL M "Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence." Nöropsikiyatri Arşivi, 49, ss.294 - 299, 2012.
ISNAD EDGÜNLÜ, Tuba GÖKDOĞAN vd. "Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence". Nöropsikiyatri Arşivi 49/4 (2012), 294-299.