Yıl: 2017 Cilt: 7 Sayı: 3 Sayfa Aralığı: 281 - 287 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Numerical approach for solving time fractional diffusion equation

Öz:
In this article one of the fractional partial differential equations was solved byfinite difference scheme based on five point and three point central spacemethod with discretization in time. We use between the Caputo and theRiemann-Liouville derivative definition and the Grünwald-Letnikov operator forthe fractional calculus. The stability analysis of this scheme is examined by usingvon-Neumann method. A comparison between exact solutions and numericalsolutions is made. Some figures and tables are included.
Anahtar Kelime:

Konular: Matematik İstatistik ve Olasılık
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Ciesielski, M., Leszczynski J. (2003). Numerical simulations of anomalous diffusion, Computer Methods in Mechanics, Gliwice, Poland, June 3-6.
  • [2] Luenberger, D.G., (1973). Introduction to Linear and Nonlinear Programming. Addison-Wesley, California
  • [3] Berkowitz, B., Scher, H., (1997). Anomalous transport in random fracture networks, Physical Review Letters, 79, 4038-4041.
  • [4] Klemm, A., Müller, H.P., Kimmich R., (1997). NMR-microscopy of pore-space backbones in rock, Phys. Rev. E, 55,4413.
  • [5] Crank, J., (1989). The Mathematics of Diffusion – 2nd ed., Oxford University Press.
  • [6] Palade, L.I., Attane, P., Huilgol, R.R., Mena, B., (1999). Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models, International Journal of Engineering Science., 37, 315-329.
  • [7] Amblard, F., Maggs, A.C., Yurke, B.,.Pargellis, A.N., Leibler, S., (1996). Subdiffusion and anomalous local viscoelasticity in actin networks, Physical Review Letters, 77, 4470-4473.
  • [8] Baskonus, H.M., Bulut, H., (2015). On the Numerical Solutions of Some Fractional Ordinary Differential Equations by Fractional AdamsBashforth-Moulton Method, Open Mathematics, 13(1), 547–556.
  • [9] Baskonus, H.M., Mekkaoui, T., Hammouch, Z. and Bulut, H., (2015). Active Control of a Chaotic Fractional Order Economic System, Entropy, 17(8), 5771-5783.
  • [10] Baskonus, H.M., Bulut, H., (2016).Regarding on the prototype solutions for the nonlinear fractionalorder biological population model, AIP Conference Proceedings 1738, 290004.
  • [11] Baskonus, H.M., Hammouch, Z., Mekkaoui, T. and Bulut, H., (2016).Chaos in the fractional order logistic delay system: Circuit realization and synchronization, AIP Conference Proceedings, 1738, 290005.
  • [12] Gencoglu, M. T., Baskonus, H. M. and Bulut, H.,(2017).Numerical simulations to the nonlinear model of interpersonal Relationships with time fractional derivative, AIP Conference Proceedings, 1798, 1-9 (020103).
  • [13] Li C., Zeng F., (2015). Numerical Methods for Fractional Calculus, Taylor & Francis Group.
  • [14] Nakagawa, J., Sakamoto K., Yamamoto M., (2010). Overwiev to mathematical analysis for fractional diffusion equation-new mathematical aspects motivated by industrial collaboration, Journal of Math-for-Industry, 2, 99-108.
  • [15] Narahari Achar B., Hanneken J., (2004). Fractional radial diffusion in a cylinder, Journal of Molecular Liquids, 114, 147-151.
  • [16] Langlands, T., (2006). Fractional Dynamics, Physica A 367, 136.
  • [17] Diethelm, K., Ford, J., Freed, A., Luchko, Y., (2005). Algorithms for the fractional calculus: a selection of numerical methods, Computer Methods in Applied Mechanics and Engineering, 194(6), 743-773.
  • [18] He, J.H., (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167, 57-68.
  • [19] Kurulay, M., Bayram, M., (2009). Approximate analytical solution for the fractional modified KdV by differential transform method, Communications in Nonlinear Science and Numerical Simulation, 15(7), 1777-178.
  • [20] Reutskiy, S. Yu., A. (2017). New semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients, Applied Mathematical Modelling, 45, 238–254.
  • [21] Smith, G. D., (1985). Numerical Solution of Partial Difference Equations, Finite Difference Methods, Oxford University.
  • [22] Yuste, S. B., Acedo, L., (2005). An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, Society for Industrial and Applied Mathematics, 42(5), 1862-1874. [23] Murillo, J. Q., Yuste, S. B., (2011). An Explicit Numerical Method for the Fractional Cable Equation, Hindawi Publishing Corporation International Journal of Differential Equations.
  • [24] Lubich, C.,(1986).Discretized fractional calculus, SIAM Journal on Mathematical Analysis, 17(3),704-719.
APA KOÇ D, GÜLSU M (2017). Numerical approach for solving time fractional diffusion equation. , 281 - 287.
Chicago KOÇ Dilara Altan,GÜLSU MUSTAFA Numerical approach for solving time fractional diffusion equation. (2017): 281 - 287.
MLA KOÇ Dilara Altan,GÜLSU MUSTAFA Numerical approach for solving time fractional diffusion equation. , 2017, ss.281 - 287.
AMA KOÇ D,GÜLSU M Numerical approach for solving time fractional diffusion equation. . 2017; 281 - 287.
Vancouver KOÇ D,GÜLSU M Numerical approach for solving time fractional diffusion equation. . 2017; 281 - 287.
IEEE KOÇ D,GÜLSU M "Numerical approach for solving time fractional diffusion equation." , ss.281 - 287, 2017.
ISNAD KOÇ, Dilara Altan - GÜLSU, MUSTAFA. "Numerical approach for solving time fractional diffusion equation". (2017), 281-287.
APA KOÇ D, GÜLSU M (2017). Numerical approach for solving time fractional diffusion equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(3), 281 - 287.
Chicago KOÇ Dilara Altan,GÜLSU MUSTAFA Numerical approach for solving time fractional diffusion equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 7, no.3 (2017): 281 - 287.
MLA KOÇ Dilara Altan,GÜLSU MUSTAFA Numerical approach for solving time fractional diffusion equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), vol.7, no.3, 2017, ss.281 - 287.
AMA KOÇ D,GÜLSU M Numerical approach for solving time fractional diffusion equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA). 2017; 7(3): 281 - 287.
Vancouver KOÇ D,GÜLSU M Numerical approach for solving time fractional diffusion equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA). 2017; 7(3): 281 - 287.
IEEE KOÇ D,GÜLSU M "Numerical approach for solving time fractional diffusion equation." An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7, ss.281 - 287, 2017.
ISNAD KOÇ, Dilara Altan - GÜLSU, MUSTAFA. "Numerical approach for solving time fractional diffusion equation". An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 7/3 (2017), 281-287.