ERHAN ŞENGEL
(Uludağ Üniversitesi, Eğitim Fakültesi, Bursa, Türkiye)
M. Yaşar ÖZDEN
(Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, Ankara, Türkiye)
Yıl: 2010Cilt: 10Sayı: 39ISSN: 1302-597X / 2528-8911Sayfa Aralığı: 191 - 211İngilizce

85 0
The effects of computer simulated experiments on high school students' understanding of the displacement and velocity concepts
Problem Durumu: Yapılan araştırmalar, lise öğrencilerinin temel fizik kavramlarını ve teorilerini anlamada ve uygulamada sıkıntılar yaşadıklarını göstermektedir. Buna bağlı olarak, bazı araştırmalarda öğrencilerin derslere belirli fizik kavramlarını öğrenmelerini engelleyecek naif yargılarla gelmekte olduğunu göstermiştir. Bu tür yanlış kavramalar sanıldığından daha geniş kapsamlıdır ve sınıf performansı üzerinde etkili olmaktadır. Aslında, öğrenciler önemli fizik kavramlarını tam anlamıyla öğrenmeden sınıflarını geçmektedirler. Öğrencilerin matematik denklemlerini kullanarak fizik problemlerini çözebilmeleri, fizik kavramlarını tam anlamıyla anlamış olduklarını göstermemektedir. Fizik derslerinde diğer disiplinlere göre ana konular arasındaki ilişki sayıca daha fazladır. Öğrenilmesi gereken karmaşık konu sayısı oldukça fazladır ve bu konuların öğrenilmesinde yalnız tanımlarının bilinmesi yeterli değildir. Ayrıca genel özellikleri de anlaşılmalıdır. Laboratuar çalışması öğrencilerin fizik dersindeki başarısını artırmakta önemli bir rol oynamaktadır. Laboratuar çalışması; 1) yaparak öğrenmedir, 2) öğrencinin kritik düşünme yeteneğini geliştirir, 3) öğrencilerin aktif olmasını sağlayan bir öğrenmedir. Öğrencilerin bilim yapmadan bilimi öğrenmeleri beklenemez ve bu sadece laboratuar da gerçekleşir. Yapılan bazı araştırmalar, öğrencilerin laboratuar çalışmasını sevdiklerini göstermektedir. Bilgisayarın eğitimde kullanılması, öğrenme alanını genişletmekte ve eğitim kalitesini olumlu yönde etkilemektedir. Bundan dolayı, her düzeyde öğrencinin bilgisayar okuryazarlığı becerilerini geliştirmesi sağlanarak onların eğitim ve öğretim sürecinde bilgisayarı kullanmaları teşvik edilmelidir. Çünkü bilgisayarların farklı eğitim araçlarını aynı anda kullanma ve kontrol etme özellikleri vardır. Bilgisayar Destekli Eğitimin çeşitli tanımları verilmektedir. Bu tanımlardan ilkine göre Bilgisayar Destekli Eğitim bilgisayar teknolojisinin öğretim sürecindeki uygulamalarının her biridir. Bu uygulamalar bilgi sunmak, özel öğretmenlik yapmak, bir becerinin gelişmesine katkıda bulunmak, benzeşim gerçekleştirmek ve sorun çözücü veri sağlamak olabilir. Başka bir tanıma göre ise, Bilgisayar Destekli Eğitim, öğrencilerinin bilgisayar sistemine programlanmış olan dersleri etkileşimde programlanmış olan dersleri etkileşimde bulunarak, doğrudan alabilmeleridir. BDE de öğrenciler eğitsel materyalleri sunan ve gösteren bilgisayar ile direk temas içindedir. Bu çalışmanın asıl amacı, fizik dersi ile birlikte verilen bilgisayar benzetişimli deneylerin yerdeğiştirme ve hız kavramlarını anlamadaki etkisini yine dersle birlikte verilen geleneksel laboratuar çalışması ile Problem Durumu: Yapılan araştırmalar, lise öğrencilerinin temel fizik kavramlarını ve teorilerini anlamada ve uygulamada sıkıntılar yaşadıklarını göstermektedir. Buna bağlı olarak, bazı araştırmalarda öğrencilerin derslere belirli fizik kavramlarını öğrenmelerini engelleyecek naif yargılarla gelmekte olduğunu göstermiştir. Bu tür yanlış kavramalar sanıldığından daha geniş kapsamlıdır ve sınıf performansı üzerinde etkili olmaktadır. Aslında, öğrenciler önemli fizik kavramlarını tam anlamıyla öğrenmeden sınıflarını geçmektedirler. Öğrencilerin matematik denklemlerini kullanarak fizik problemlerini çözebilmeleri, fizik kavramlarını tam anlamıyla anlamış olduklarını göstermemektedir. Fizik derslerinde diğer disiplinlere göre ana konular arasındaki ilişki sayıca daha fazladır. Öğrenilmesi gereken karmaşık konu sayısı oldukça fazladır ve bu konuların öğrenilmesinde yalnız tanımlarının bilinmesi yeterli değildir. Ayrıca genel özellikleri de anlaşılmalıdır. Laboratuar çalışması öğrencilerin fizik dersindeki başarısını artırmakta önemli bir rol oynamaktadır. Laboratuar çalışması; 1) yaparak öğrenmedir, 2) öğrencinin kritik düşünme yeteneğini geliştirir, 3) öğrencilerin aktif olmasını sağlayan bir öğrenmedir. Öğrencilerin bilim yapmadan bilimi öğrenmeleri beklenemez ve bu sadece laboratuar da gerçekleşir. Yapılan bazı araştırmalar, öğrencilerin laboratuar çalışmasını sevdiklerini göstermektedir.
Sosyal > Eğitim, Eğitim Araştırmaları
DergiAraştırma MakalesiErişime Açık
  • Alacapınar, F. G. (2007). Traditional education, computer assisted education, systematic learning and achievement. Egitim Arastirmalari - Eurasian Journal of Educational Research, 29, 13-24.
  • Andaloro, G., Bellomonte, L., Lupo, L. & Sperandeo-MÝneo, R. M. (1994). Construction and validation of a computer-based diagnostic module on average velocity. Journal of Research in Science Teaching, 31, 53-63.
  • Beichner, R. J. (1990). The effect of simultaneous motion representation and graphing generation in a kinematics laboratory. Journal of Research in Science Teaching, 27, 803-815.
  • Beichner, R. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62, 750–762.
  • Bennett, R. (1986). The effect of computer assisted instruction and reinforcement schedules on physics achievement and attitudes toward physics of high school students. Dissertation Abstracts International, 46(2), 3670A
  • Brasell, H. (1987). The effect of real-time laboratory graphing on learning graphic representation of distance and velocity. Journal of Research in Science Teaching, 24, 385-395.
  • Bryant, R. J., & Marek, E. A. (1987). They like lab-centered science, The Science Teacher, 54, 42-45.
  • Chang, C. Y. (2002). Does computer - assisted instruction + problem solving = improved science outcomes? A pioneer study. The Journal of Educational Research, 95(3), 143-150.
  • Choi, B., & Gennaro, E. (1987). The effectiveness of using computer simulated experiments on junior high students’ understanding of the volume displacement concept. Journal of Research in Science Teaching, 24, 539-552.
  • Çataloğlu, E. (1996). Promoting teachers’ awareness of students’ misconceptions in introductory mechanics. Unpublished Master’s Thesis. Middle East Technical University, Ankara.
  • Dobson, E. L., Hill, M., & Turner, J. D. (1995). An evaluation of the student response to electronics teaching using a CAL package. Computers and Education, 25(1-2), 13-20.
  • Donald, J. G. (1993). Professor’s and student’s conceptualization of the learning task in introductory physics courses. Journal of Research in Science Teaching, 30, 905 - 918.
  • Ertepınar, H. (1995). The relationship between formal reasonıng ability, Computer assisted instruction, and chemistry achievement. Haccetepe Üniversitesi Eğitim Fakültesi Dergisi, 11, 21-24. (p. 21)
  • Ertepınar, H., & Geban, Ö. (1996). Effect of instruction supplied with the investigative-oriented laboratory approach on achievement in science course, Educational Research, 38 (3), 333-341.
  • Evans, C., & Gibbons, N. J. (2007). The interactivity effect in multimedia learning, Computers and Education, 49(4), 1147-1160.
  • Feinberg, R., & Knittel, M. (1985). Microcomputer spreadsheet programs in the physics laboratory. American Journal of Physics, 53(7), 631-635.
  • Gale, D. S. (1980). Integrating microcomputers and microelectronics into the physics curriculum. American Journal of Physics, 48, 847-851.
  • Geban, Ö., Aşkar, P., & Özkan, İ. (1992). Effects of computer simulations and problem solving approaches on high school students, Journal of Educational Research, 86, 6-10.
  • Gürbüz, R. (2007). The Effects of Computer Aided Instructıon on Students’ Conceptual Development : A Case of Probability Subject, Eurasian Journal of Educational Research, 28, 75-87.
  • Hannafin, R. D., & Sullivan, H. J. (1995). Learner control in full and lean cai programs, Educational Technology and Research and Developments, 43, 19-30.
  • Haury, D. L., & Rillero, P. (1994). Perspectives of hands-on science teaching, Retrieved June 28 1997 from http://www.ncrel.org/ncrel/sdrs/areas/issues/content/cntareas/science/e ric /eric-toc.htm
  • Hewson, P. W. (1985). Diagnosis and remediation of an alternative conception of velocity using a microcomputer program. American Journal of Physics, 53(7), 684-690.
  • Hughes, I. E. (2002). Alternatives to laboratory practicals-do they meet the needs?, Innovations in Education and Teaching International, 38(1), 3-7.
  • Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: students’ cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24(8), 803–821.
  • Idar, J., & Ganiel, U. (1985). Learning difficulties in high school physics: development of a remedial teaching method and assessment of its impact on achievement. Journal of Research in Science Teaching, 22(2), 127-140.
  • Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students' understanding of trajectory motion. Computers & Education. 35 (2), 183-204.
  • Kyle, W. C, Penick, J. E. & Shymansky, J. A. (1979). Assessing and analyzing the performance of students in college science laboratories. Journal of Research in Science Teaching, 16 (6), 545-551.
  • Law, N., & Lee, Y. (2004). Using an iconic modeling tool to support the learning of genetic concepts. Journal of Biological Education, 38 (3), 118-124, 141.
  • Lewis, R. A. (1984). Computer assignments and problems classes for physics students. Computers in Education, 16, 349-362.
  • Lunetta, V. N., & Hofstein, A. (1981). Simulations in science education. Science Education, 65(3), 243-252.
  • McDermott, L., Rosenquist, M. & van Zee, E. (1987). Student difficulties in connecting graphs and physics, American Journal of Physics, 55, pp. 503–513.
  • Miller, D. G. (1986). The integration of computer simulation into the community college general biology laboratory. Dissertation Abstract International, 47(6), 2106-A.
  • Mokros, J., & Tinker, R. (1987). The impact of microcomputer-based labs on children’s ability to interpret graphs. Journal of Research in Science Teaching, 24, 369-383.
  • Powell, J. V., Aeby, V. G., Jr., & Carpenter-Aebyc, T. (2003). A comparison of student outcomes with and without teacher facilitated computer-based instruction. Computers & Education, 40, 183–191.
  • Redish, E. F., Saul, M. J., & Steinberg, R. N. (1997). On the effectiveness of active engagement microcomputer-based laboratories. American Journal of Physics, 65(1), 45-54.
  • Reif, F., & Larkin, I. H. (1991). Cognition in scientific and everyday domains; comparison and learning implications. Journal of Research in Science Teaching, 28, 733-760.
  • Renner, J. W., Abraham, M. R., & Burnie, H. H. (1985). Secondary school students' beliefs about physics laboratory. Science Education, 69, 649-663.
  • Rieber, L. P. (1996). Animation as a feedback in a computer-based simulation: representation matters. Educational technology, Research & Development, 44, 5- 22.
  • Rowe, G. W., & Gregor, P. (1999). A computer based learning system for teaching computing: implementation and evaluation. Computer & Education, 33, 65–76.
  • Shaw, E. L. (1985). Effects of the use of microcomputer simulations on concept identification achievement and attitudes toward computers and science instruction of middle school students of various levels of logical reasoning ability. Dissertation Abstracts International, 45(9), 2827-A.
  • Shim, K., Park, J., Kim, J., Park, Y. & Ryu, H. (2003). Application of virtual reality technology in biology education. Journal of Biological Education, 37 (2), 71-74.
  • Shulman, L. D., & Tamir, P. (1973). Research on teaching in the natural sciences. In p., a., okebukola and m., b., ogunniyi (eds), cooperative, competitive, and individualistic science laboratory interaction patterns: effects on students' achievement and acquisition of practical skills. Journal of Research in Science Teaching, 21, 875-884.
  • Svec, M. T., & Anderson, H. (1995). Effect of microcomputer-based laboratory on students' graphing interpretation skills and conceptual understanding of motion. Dissertation Abstracts International, 55(8), 2338-A.
  • Trowbridge, D. E., & McDertmott, L. C. (1980). Investigation of student understanding of the concept of velocity in one dimension, American Journal of Physics, 48(12), 1020-1028.
  • Tsai, C. C. & Chou, C. (2002). Diagnosing students’ alternative conceptions in science. Journal of Computer Assisted Learning, 18, 157–165.
  • Tweedy, M. E., & Hoese, W. J. (2005). Diffusion activities in college laboratory manuals. Journal of Biological Education, 39 (4), 150-155.
  • Vasniadov, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in development, Review of Educational Research, 57, 51-67.
  • Walsh, E., et al. (1993). Physics students understanding of relative speed: a phenomenographic study. Journal of Research in Science Teaching, 30, 1133-1148.
  • Wise, K. & Okey, J. R. (1984). The impact of microcomputer simulation on achievement and attitude of high school physician science students. Dissertation Abstracts International, 44(8), 2432-A.
  • Wilt, J. R. (2005). Ninth grade physics: a necessity for high school science programs. Journal of Curriculum and Supervision, Summer 2005, Vol. 20, No. 4, 342-362.
  • Zou, X. (2003). How students justify their knowledge in the Investigative Science Learning Environment. 2003 Physics Education Research Conference, Madison, Wisconsin. (p.105)

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.