HARUN KARSLI
(Abant İzzet Baysal Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Bolu, Türkiye)
M. Ali ÖZARSLAN
(Doğu Akdeniz Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, KKTC)
Yıl: 2010Cilt: 39Sayı: 2ISSN: 1303-5010 / 2651-477XSayfa Aralığı: 241 - 253İngilizce

39 0
Direct local and global approximation results for operators of Gamma type
Fen > Temel Bilimler > Matematik
Fen > Temel Bilimler > İstatistik ve Olasılık
DergiAraştırma MakalesiErişime Açık
  • [1] Becker, M. Global approximation theorems for Sz´asz-Mirakyan and Baskakov operators in polynomial weight spaces, Indiana University Mathematics Journal 27 (1), 127–142, 1978.
  • [2] Chen, W. and Guo, S. On the rate of convergence of the Gamma Operator for functions of bounded variation, Approx. Theory Appl. 1 (5), 85–96, 1985.
  • [3] DeVore, R.A. and Lorentz, G.G. Constructive Approximation (Springer-Verlag, Berlin, 1993).
  • [4] Ditzian, Z. Direct estimate for Bernstein polynomials, J. Approx. Theory 79, 165–166, 1994.
  • [5] Duman, O. and ¨Ozarslan, M.A. Global approximation results for modified Szasz-Mirakjan operators, Taiwanese J. Math. (accepted).
  • [6] Felten, M. Local and global approximation theorems for positive linear operators, J. Approx. Theory 94, 396–419, 1998.
  • [7] Finta, Z. Direct local and global approximation theorems for some linear positive operators, Analysis in Theory and Applications 20 (4), 307–322, 2004.
  • [8] Izgi, A. Order of approximation of functions of two variables by a new type Gamma oper- ators, General Mathematics 17 (1), 23–32, 2009.
  • [9] Izgi, A. and B¨uy¨ukyazici, I. Approximation and rate of approximation on unbounded inter- vals, Kastamonu Edu. Journal Okt. 11 (2), 451–460, 2003 (in Turkish).
  • [10] Karsli, H. Rate of convergence of a new Gamma Type Operators for functions with deriva- tives of bounded variation, Math. Comput. Modelling 45 (5-6), 617–624, 2007.
  • [11] Karsli, H., Gupta, V. and Izgi, A. Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation, Appl. Math. Letters 22 (4), 505–510, 2009.
  • [12] Lupas, A. and M¨uller, M. Approximationseigenschaften der Gammaoperatoren, Math. Zeitschr. 98, 208–226, 1967.
  • [13] Mazhar, S.M. Approximation by positive operators on infinite intervals, Mathematica Balkanica 5 (2), 99–104, 1991.
  • [14] ¨Ozarslan, M.A. and Duman, O. Local approximation results for Szasz-Mirakjan type oper- ators, Arch. Math. (Basel) 90, 144–149, 2008.
  • [15] Swiderski, T. Global approximation theorems for the generalized modified Szasz- Mirakyan operators in polynomial weighted spaces, Demonstratio Math. 36 (2), 383–392, 2003.
  • [16] Totik, V. The Gamma operators in Lp spaces, Publ. Math. 32, 43–55, 1985.
  • [17] Xu, X. -W. and Wang, J.Y. Approximation properties of modified Gamma operators, J. Math. Anal. Appl. 332, 798–813, 2007.
  • [18] Zeng, X. -M. Approximation properties of gamma operators, J. Math. Anal. Appl. 311 (2), 389–401, 2005.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.