MEHMET BİLGİLİ
(Çukurova Üniversitesi, Adana Meslek Yüksek Okulu, Adana, Türkiye)
Yıl: 2011Cilt: 35Sayı: 1ISSN: 1300-011X / 1303-6173Sayfa Aralığı: 83 - 93İngilizce

100 0
The use of artifcial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey
Bu çalışmanın amacı, önceki aya ait bazı aylık ortalamameteorolojik değişkenleri kullanarak şu anki ayın ortalama toprak sıcaklığını tahmin etmek için bir yapay sinir ağı (YSA) modeli geliştirmektir. Bunun için, Adana meteoroloji istasyonunda 2000 ve 2007 yılları arasında ölçülen toprak sıcaklığı ve diğer meteorolojik veriler kullanıldı. Toprak sıcaklıkları Türkiye Meteoroloji İşleri Genel Müdürlüğü (DMİ) tarafından yer seviyesinden 5, 10, 20, 50 ve 100 cm derinliklerde ölçüldü. Üç katmanlı ileri beslemeli bir yapay sinir ağı yapısı oluşturuldu ve YSA’nın öğrenmesi için geri yayılım algoritması kullanıldı. Giriş değişkenleri değiştirilerek farklı modeller oluşturuldu ve ağın en iyi giriş yapısı incelendi. En iyi tahmin modelini ortaya çıkarmak için öğrenme ve test işlemlerindeki YSA modellerinin performansı ölçülen toprak sıcaklığı değerleri ile karşılaştırıldı. Elde edilen sonuçlara göre, toprak sıcaklığının tahmin edilmesi için YSA yaklaşımının çok uygun bir model olduğu görüldü.
Fen > Mühendislik > Orman Mühendisliği
DergiAraştırma MakalesiErişime Açık
  • Bechrakis DA, Sparis PD (200 ) Correlation of wind speed between neighboringmeasuring stations. IEEE Transactions on Energy Conversion 19: 00- 06.
  • Bilgili M, Sahin B (2010) Prediction of long-term monthly temperature and rainfall in Turkey. Energy Sources 32: 60-71.
  • Bilgili M, Sahin B, Yasar A (2007) Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renewable Energy 32: 2350-2360.
  • Droulia F, Lykoudis S, Tsiros I, Alvertos N, Akylas E, Garofalakis I (2009) Ground temperature estimations using simplified analytical and semi-empirical approaches. Solar Energy 83: 211- 219.
  • Elminir HK, Azzam YA, Younes FI (2007) Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models. Energy 32: 1513-1523.
  • Enrique G, Braud I, Jean-Louis T,Michel V, Pierre B, Jean-Christophe C (1999) Modelling heat and water exchanges of fallow land covered with plant-residue mulch. Agriculture and Forest Meteorology 97: 151-169.
  • Firat M, Gungor M (2009) Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Advances in Engineering Software 0: 731- 737.
  • Gao Z, Bian L, Hu Y, Wang L, Fan J (2007) Determination of soil temperature in an arid region. Journal of Arid Environments 71: 157-168.
  • Gao Z, Horton R, Wang L, Liu H, Wen J (2008) An improved forcerestore method for soil temperature prediction. European Journal of Soil Science 59: 972-981.
  • García-Suárez AM, Butler CJ (2006) Soil temperatures at Armagh observatory, northern Ireland, from190 to 2002. International Journal of Climatology 26: 1075-1089.
  • George RK (2001) Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Analysis 7: 1737-17 8.
  • Haykin S (199 ) Neural Networks, A Comprehensive Foundation. Prentice-Hall, Inc, New Jersey.
  • Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews 5: 373- 01.
  • Kang S, Kim S, Oh S, Lee D (2000) Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecology andManagement 136: 173- 18 .
  • Krauss G, Kindangen JI, Depecker P (1997) Using artificial neural networks to predict interior velocity coefficients. Building and Environment 32: 295-303.
  • Kisi O (200 ) River flow modeling using artificial neural networks. Journal of Hydrologic Engineering 9: 60-63.
  • Koçak K, Şaylan L, Eitzinger J (200 ) Nonlinear prediction of nearsurface temperature via univariate and multivariate time series embedding. Ecological Modelling 173: 1-7.
  • Maqsood I, Khan MR, Huang GH, Abdalla R (2005) Application of soft computing models to hourly weather analysis in southern Saskatchewan, Canada. Engineering Applications of Artificial Intelligence 18: 115-125.
  • Melesse AM, Hanley RS (2005) Artificial neural network application for multi-ecosystem carbon flux simulation. Ecological Modelling 189: 305-31 .
  • Mihalakakou G (2002) On estimating soil surface temperature profiles. Energy and Buildings 3 : 251-259.
  • Paul KI, Polglase PJ, Smethurst PJ,O’Connell AM, Carlyle CJ, Khanna PK (200 ) Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agriculture and Forest Meteorology 121: 197-182.
  • Prangnell J, McGowan G (2009) Soil temperature calculation for burial site analysis. Forensic Science International 191: 10 -109.
  • Sözen A, Arcaklıoğlu E, ÖzalpM, Çağlar N (2005) Forecasting based on neural network approach of solar potential in Turkey. Renewable Energy 30: 1075-1090.
  • Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrological Science Journal 7: 879-892.
  • Tenge AJ, Kagihura FBS, Lal R, Singh BR (1998) Diurnal soil temperature fluctuations for different erosion classes of an oxisol atMlingano, Tanzania. Soil and Tillage Research 9: 211- 217.
  • Ustaoglu B, Cigizoglu HK, Karaca M (2008) Forecast of daily mean, maximum and minimum temperature time series by three artificial neural networkmethods.Meteorological Applications 15: 31- 5.
  • Yılmaz T,Özbek A, Yılmaz A, BüyükalacaO(2009) Influence of upper layer properties on the ground temperature distribution. Journal of Thermal Science and Technology 29: 3-51.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.