Yıl: 2011 Cilt: 12 Sayı: 2 Sayfa Aralığı: 155 - 162 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Orman genetiği ve biyoteknolojisi

Öz:
Son yıllarda orman ağaçlarında yürütülen biyoteknoloji ve genomik çalışmalarının sayısı hızlı bir şekilde artmaktadır. Biyoteknolojik uygulamalardan doku kültürü ve klonal çoğaltım, genetik markörler, gen transfer teknolojileri ile genomik teknolojileri yaygın olarak kullanılmaktadır. Biyoteknoloji alanında etkili ve pratik tekniklerin gelişimi ile bazı orman ağaç türlerinin genom dizilerinin tamamlanması, bu hızlı gelişim sürecinde önemli faktörlerdir. Bu teknikler ve çalışmalar, orman ağaçları ıslahı projelerine büyük katkılar sağlamıştır. Bu çalışmalar sonucunda, orman ağaçlarında yeni gen bölgelerinin bulunması, gen transferleri, genetik haritaların oluşturulması, klonal çoğaltım ve odun kalitesinin artırılması gibi gelişmeler gerçekleştirilmiştir. Özellikle orman ağaçlarında büyüme ve odun özellikleri ile ilgili genler daha ilgi çekmektedir. Kavak ağacının (Populus trichocarpa) genom dizilenmesiyle elde edilen yaklaşık 45.000 genden oluşan kaynak, genomik araştırmalara büyük katkı sağlamıştır. Böylece yeni gen keşifleri, QTL analizleri, genetik modifikasyonlar ve EST dizilemeleri kolaylaşmıştır. Ayrıca bu çalışmalar, özel çevresel koşullara dayanıklı ağaç türleri geliştirmeye de yardımcı olmaktadır. Bu derlemede, orman ağaçlarında biyoteknolojik ve genetik temelli teknuolojilerin uygulama alanları ile bu teknolojilerin hedefleri ve sürdürülebilir ormancılık uygulamalarına katkıları değerlendirilmiştir.
Anahtar Kelime: biyoloji genetik kaynaklar biyoteknoloji orman ekolojisi

Konular: Biyoloji Genetik ve Kalıtım Ziraat Mühendisliği Orman Mühendisliği

Forest genetics and biotechnology

Öz:
The number of biotechnology and genomics studies related to forest trees has increased rapidly in recent years. Biotechnological applications of tissue culture and clonal propagation, genetic markers, gene transfer technologies and genomic technologies are widely used. Development of effective and practical techniques in the field of biotechnology and the completion of some forest tree species genome sequences are important factors in this rapid development process. These techniques and studies have made great contributions to projects of breeding of forest trees. As a result of these studies, such as found new gene regions, gene transfers, the creation of genetic maps, clonal propagation and improving the quality of wood in forest trees were carried out. Especially, genes which include growth and wood properties of forest trees are attracting more interest. Source of about 45,000 genes by sequencing of genome of poplar tree (Populus trichocarpa) has provided a major contribution to genomic research. Thus, new gene discovery, QTL analysis, genetic modifications and EST sequencing is easy. Moreover, these studies also help to develop a special tree species resistant to particular environmental conditions. In this review, application areas of biotechnology and genetic-based technologies in forest trees, objectives of these technologies and contributions of sustainable forestry practices were assessed.
Anahtar Kelime: forest ecology biology genetic resources biotechnology

Konular: Biyoloji Genetik ve Kalıtım Ziraat Mühendisliği Orman Mühendisliği
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Bonga, J.M., Von Aderkas, P. 1993. Rejuvenation of tissues from mature conifers and its implications for clonal propagation in vitro In Clonal Forestry: Genetics, Biotechnology and Application, Eds. M.R. Ahuja and W.J. Libby. Springer Verlag, New York, pp. 182-199.
  • Brunner, A.M., Li, J., DiFazio, P.S., Shevchenko, O., Montgomery, B.E., Mohamed, R., Wei, H., Ma, C., Elias, A.A., VanWormer, K., Strauss, S.H. 2007. Genetic containment of forest plantations, Tree Gen. Genom., 3(2):75-100.
  • Burdon, R.D., Libby W.J. 2006. Genetically Modified Forests: From Stone Age to Modern Biotechnology, Forest History Society, Durham, 79 p.
  • Campbell, M.M.., Brunner M.A, Jones, H.M., Strauss, S.H. 2003. Forestry’s fertile crescent: the application of biotechnology to forest trees, Plant Biotech. J., 1: 141-154.
  • Chaffey, N., Cholewa, E., Regan, S., Sundberg, B. 2002. Secondary xylem development in Arabidopsis: a model for wood formation, Physiol. Plant., 114 (4): 594-600.
  • Charest, P.J., Devantier, Y., Lachance, D. 1996. Stable genetic transformation of Picea mariana (Black Spruce) via particle bombardment, In Vitro Cell. Dev. Biol. Plant., 32(2): 91-99.
  • Chu, Y., Su, X., Huang, Q., Zhang, X. 2009. Patterns of DNA sequence variation at candidate gene loci in black poplar (Populus nigra L.) as revealed by single nucleotide polymorphisms, Genetica, 137:141–150.
  • Confalonieri, M., Balestrazzi, A., Bisoffi, S. 1994. Genetic transformation of Populus nigra by Agrobacterium tumefaciens, Plant Cell Reports, Volume 13, Number 5, 256-261.
  • Confalonieri, M., Balestrazzi, A., Bisoffi, S., Carbonera, D. 2003. In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement, Plant Cell Tiss. Org. Cult., 72(2): 109-138.
  • Conner, A.J., Glare, T.R., Nap, J.P. 2003. The release of genetically modified crops into the environment, Part II, Overview of ecological risk assessment, The Plant J., 33(1): 19-46.
  • Çavuşoğlu, A., 2001. Kavak (Populus ssp.) Doku Kültürü Sistemlerinin Kurulması ve Somatik Embriyogenez, Doktora Tezi, Marmara Üniversitesi Fen-Bilimleri Enstitüsü, İstanbul, 72 s.
  • Devey, M.E., Carson, S.D., Nolan, M.F., Matheson, A.C., Te Riini, C., Hohepa, J. 2003. QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection, Theor. Appl. Genet., 108(3): 516-524.
  • Devey M.E., Groom K.A., Nolan M.F., Bell J.C., Dudzinski M.J., Old K.M., Matheson A.C., Moran G.F. 2004. Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiate, Theoretical and Applied Genetics, 108: 1056–1063.
  • Dillen, S.Y, Storme, V., Marron, N., Bastien, C., Neyrinck, S., Steenackers, M., Ceulemans, R., Boerjan, W. 2009. Genomic regions involved in productivity of two interspecific poplar families in Europe, Tree Gen. & Genom., 5: 147–164.
  • Djerbi, S., Lindskog, M., Arvestad, L., Sterky, F., Teeri, T.T. 2005. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes, Planta, 221: 739–746.
  • Eckert, A.J., Pande, B., Ersoz, E.S., Wright, M.H., Rashbrook, V.K., Nicolet, C.M., Neale, D.B. 2009. High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.), Tree Genetics & Genomes, 5:225–234.
  • Endres, A.B., Redick, T.P., 2008. NEPA and the economic impacts of biotechnology on the food-feed supply chain, Biotech Briefing, 5(1). Eriksson, G. 2001. Conservation of noble hardwoods in Europe, Can. J. For. Res., 31(4): 577-587.
  • Ferreira, S., Hjerno, K., Larsen, M., Wingsle, G., Larsen, P., Fey, S., Roepstorff, P., Pais, M.S. 2006. Proteome Profiling of Populus euphratica Oliv. upon heat stress, Ann. Bot., 98: 361-377.
  • Fillatti J.J., Sellmer J., McCown B., Haissig B., Comai L. 1987. Agrobacterium mediated transformation and regeneration of Populus, Mol. Gen. Genet., 206:192-199.
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391: 806-811.
  • Fromm, M.E, Taylor, L.P., Walbot, V. 1986. Stable transformation of maize after gene transfer by electroporation, Nature, 319: 791-793.
  • Gao, M., Kawabe, M., Tsukamoto, T., Hanada, H., Tao, R. 2010. Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot (Prunus mume) using immature cotyledons, Scientia Horticulturae, 124- 360–367.
  • Gjuleva, V., Atanassov, A. 1994. Micropropagation of Platanus acerifolia in vitro, Sil. Genet., 43(4), 215-218.
  • Gözükırmızı, N., Bajroviç, K., İpekçi, Z., Boydak, M., Akalp, T., Tunçtaner, K., Balkan, H., Tanrıyar, H., Çalıkoğlu, M., Oğraş, T., Özden, Ö., Tulukçu, M., Tank, T. 1998. Genotype Differencies in Direct Plant Regeneration from Stem Explants of Populus tremula in Turkey, J. For. Res., 3, 123-126.
  • Grattapaglia, D., Plomion, C., Kirst M., Sederoff, R.R. 2009. Genomics of growth traits in forest trees, Curr. Opin. Plant. Biol., 12(2):148-156.
  • Groover, A. T. 2007. Will genomics guide a greener forest biotech? Trends in Plant Sci., 12(6) 234-238.
  • Groover, A.T., Fontana J.R., Dupper, G., Ma, C., Martienssen, R., Strauss, S., Meilan, R. 2004. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees, Plant Physiol., 134:1742-1751.
  • Gupta, P.K., Pullman, G., Timmis, R., Kritinger, H., Carlson, W.C., Grob, J., Welty, E. 1993. Forestry in the 21st century: the biotechnology of somatic embryogenesis, Biotech., 11: 454-459.
  • Han, K.H., Meilan, R., Ma, C., Strauss, S.H. 2000. An Agrobacterium transformation protocol effective on a variety of cottonwood hybrids (genus Populus), Plant Cell Rep., 19: 315-320.
  • Hemery, G. E., Clark, J. R., Aldinger, E., Claessens, H., Malvolti, M. E., O'connor, E., Raftoyannis, Y., Savill, P.S., Brus, R. 2009. Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities, Forestry, 83(1): 65-81.
  • Ho, C.K., Chang, S.H., Tsay, J.Y., Tsai, C.J., Chiang, V.L., Chen Z.Z. 1998. Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants, Plant Cell Rep., 17(9): 675-680.
  • Israelsson, M., Eriksson, M.E., Hertzberg, M., Aspeborg, H., Nilsson, P., Moritz, T. 2003. Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth, Plant Molecular Biology, 52: 893–903.
  • Kalluri, U.C., Joshi, C.P. 2004. Differential expression patterns of two cellulose synthase genes are associated with primary and secondary cell wall development in aspen trees, Planta, 220: 47–55.
  • Kim, H., Patel, K.R., Thorpe, T.A. 1985. Regeneration of mulberry plantlets through tissue culture, Bot. Gaz., 146, 335-340.
  • Kim, S.K., 2001. Functional genomics: the worm scores a knockout, Current Biol., 11: 85-87.
  • Kirst M., Myburg, A.A., Kirst M.E., Scott J., Sederoff R. 2004. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus, Plant Physiol, 135:2368-2378.
  • Kirst, M., Myburg, A., Sederoff, R.R., 2004. Genetic mapping in forest trees: markers, linkage analysis and genomics, Genet. Eng., 24: 105-141.
  • Klein, T.M., Wolf, E.D., Wu, R., Sanford, J.C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells, Nature, 327: 70-73.
  • Klimaszewska, K., Devantier, Y., Lachance, D., Lelu, M.A., Charest, P.J. 1997. Larix laricina (tamarack) somatic embryogenesis and genetic trans-formation, Can. J. For. Res., 27: 538-550.
  • Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J.M., Ralph, J., Chiang, V.L., 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation, Proc. Natl. Acad. Sci. USA, 100: 4939-4944.
  • Li, X.Y., Huang, F.H., Gbur, E.E. 1997. Polyethylene glycol-promoted development of somatic embryos of loblolly pine (Pinus taeda L.), In Vitro Cell. Dev. Bio. Plant, 33:184-189.
  • Li, X.Y., Huang, F.H., Gbur, E.E. 1998. Effect of basal medium, growth regulators ve Phytagel concentration on initiation of embryogenic cultures from immature zygotic embryos of loblolly pine (Pinus taeda L.), Plant Cell Rep., 17:298-301.
  • Liu, J.J., Ekramoddoullah A.K.M. 2008. Development of leucine-rich repeat polymorphism, amplified fragment length polymorphism, and sequence characterized amplified region markers to the Cronartium ribicola resistance gene Cr2 in western white pine (Pinus monticola), Tree Genetics & Genomes, 4:601–610.
  • MacKay, J.J., O’Malley, D.M., Presnell, T., Booker, F.L., Campbell, M.M., Whetten, R.W., Sederoff, R.R. 1997. Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase, Proc. Natl. Acad. Sci. USA, 94: 8255–8260.
  • Maliro M.F.A., Lameck, G. 2004. Potential of cassava flour as a gelling agent in media for plant tissue cultures, African J. Biotech., 3(4): 244-247.
  • Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragonés A, Pérez DD, Harvengt L, Espinel S, Ritter E. 2003. Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.), Silvae Genetica 52, 8–15.
  • Mayer, H., Aksoy, H. 1986. Walder der Türkei, Gustav Fischer Verlag, Stuttgart. Meilan, R., Brunner, A.M., Skinner, J.S., Strauss, S.H. 2001. Modification of flowering in transgenic trees. In: N. Morohoshi and A. Komamine (Eds.), Molecular Breeding of Woody Plants, Elsevier Science B.V, pp. 247-256.
  • Meilan, R., Ma, C., Cheng, S., Eaton, J.A., Miller, L.K., Crockett, R.P., DiFazio, S.P., Strauss, S.H. 2000. High Levels of Roundup and leaf beetle resistance in genetically Engineered hybrid cottonwoods In: K.A. Blatner, J.D. Johnson, and D.M. Baumgartner, eds., Hybrid Poplars in the Pacific Northwest: Culture, Commerce and Capability, Washington State University Cooperative Extension Bulletin MISCO272, Pullman, WA. pp. 29-38.
  • Merkle, S.A., Dean F.D. 2000. Forest tree biotechnology, Current Opinion in Biotech., 11: 298-302.
  • Merkle, S. A., Trigiano, R. N. 1992. In vitro propagation of hardwoods Applications of vegetative propagation in forestry, Proceedings of the 1992 SRIEG Biennial Symposium on Forest Genetics, Huntsville, AL. USDA Forest Service Southern Forest Experiment Station General Technical Report SO-108, 1993:23-37.
  • Nair, S.G. and Vijayalakshmi C., 2010. Genetic transformation of itc 3, a superior clone of eucalyptus tereticornis. Indian J. Agric. Res., 44 (3) : 229 – 232.
  • Naujoks, G. 2003. Somatic embryogenesis in beech (Fagus sylvatica), Biologia (Bratislava), 58 (1): 83-87.
  • Neale, D.B, Savolainen, O., 2004. Association genetics of complex traits in conifers, Trends in Plant Sci., 9: 325-330.
  • Nigro, S.A., Makunga, N.P., Jones, N.B., Staden, J.V. 2004. A biolistic approach towards producing transgenic Pinus patula embryonal suspensor masses, Plant Growth Regulation 44, 187–197.
  • Nigro, S.A., Makunga, N.P., Jones, N.B., Staden, J.V. 2008. An Agrobacterium-mediated system for gene transfer in Pinus patula, South African Journal of Botany, 74, 144–148.
  • Nilsson, S., 2001. Forest policy, criteria and indicators, and certification. Interim Report IR-01-024, International Institute for Applied Systems Analysis, Laxenburg, Austria.
  • Olson, M.S., Robertson, A.L., Takebayashi, N., Silim, S., Schroeder, W.R., Tiffin, P. 2010. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera), New Phytologist, 186: 526–536.
  • Park, Y.W., Baba, K., Furuta, Y., Iida, I., Sameshima, K., Arai, M., Hayashi, T. 2004. Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar, FEBS Lett, 564:183-187.
  • Pena, L., Seguin, A. 2001. Recent advances in the genetic transformation of trees, Trends in Biotech., 19: 500-506.
  • Peternel, S., Gabrovsek, K., Gogala, N., Regvar, M. 2009. In vitro propagation of European aspen (Populus tremula L.) from axillary buds via organogenesis, Scientia Horticulturae, 121: 109-112.
  • Pot, D., Rodrigues J.C., Rozenberg P., Chantre G., Tibbits J., Cahalan C. 2006. QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.), Tree Genetics & Genomes, 2: 10–24.
  • Pullman, G.S., Namjoshi, K., Zhang, Y. 2003. Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate, Plant Cell Rep, 22:85–95.
  • Pullman, G.S., Johnson, S., Tassel, S.V., Zhang, Y. 2005. Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth withMES pH bu
APA Filiz E, ÇİÇEK E, AYDIN y (2011). Orman genetiği ve biyoteknolojisi. , 155 - 162.
Chicago Filiz Ertugrul,ÇİÇEK Emrah,AYDIN yıldız Orman genetiği ve biyoteknolojisi. (2011): 155 - 162.
MLA Filiz Ertugrul,ÇİÇEK Emrah,AYDIN yıldız Orman genetiği ve biyoteknolojisi. , 2011, ss.155 - 162.
AMA Filiz E,ÇİÇEK E,AYDIN y Orman genetiği ve biyoteknolojisi. . 2011; 155 - 162.
Vancouver Filiz E,ÇİÇEK E,AYDIN y Orman genetiği ve biyoteknolojisi. . 2011; 155 - 162.
IEEE Filiz E,ÇİÇEK E,AYDIN y "Orman genetiği ve biyoteknolojisi." , ss.155 - 162, 2011.
ISNAD Filiz, Ertugrul vd. "Orman genetiği ve biyoteknolojisi". (2011), 155-162.
APA Filiz E, ÇİÇEK E, AYDIN y (2011). Orman genetiği ve biyoteknolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, 12(2), 155 - 162.
Chicago Filiz Ertugrul,ÇİÇEK Emrah,AYDIN yıldız Orman genetiği ve biyoteknolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A 12, no.2 (2011): 155 - 162.
MLA Filiz Ertugrul,ÇİÇEK Emrah,AYDIN yıldız Orman genetiği ve biyoteknolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, vol.12, no.2, 2011, ss.155 - 162.
AMA Filiz E,ÇİÇEK E,AYDIN y Orman genetiği ve biyoteknolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A. 2011; 12(2): 155 - 162.
Vancouver Filiz E,ÇİÇEK E,AYDIN y Orman genetiği ve biyoteknolojisi. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A. 2011; 12(2): 155 - 162.
IEEE Filiz E,ÇİÇEK E,AYDIN y "Orman genetiği ve biyoteknolojisi." Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, 12, ss.155 - 162, 2011.
ISNAD Filiz, Ertugrul vd. "Orman genetiği ve biyoteknolojisi". Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A 12/2 (2011), 155-162.