Yıl: 2012 Cilt: 36 Sayı: 3 Sayfa Aralığı: 269 - 280 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Nickel hyperaccumulation by natural plants in Turkish serpentine soils

Öz:
Özet: Türk serpantin topraklarındaki doğal bitkiler, Ni biriktirme kapasitelerinin saptanması amacıyla etüt edilmiştir. Batı Anadolu’da serpantin topraklarının coğrafi dağılımı ve DTPA (dietilen triamin pentaasetik asit) ile ekstrakte edilebilir nikel kapsamları, üzerlerindeki bitki varlığıyla birlikte incelenerek, topraktaki bitkilerce alınabilir Ni miktarı ile potansiyel hiper toplayıcı bitkilerde biriken Ni kapsamı arasındaki ilişki ortaya konmaya çalışılmıştır. Araştırma kapsamında, Türkiye yüz ölçümünün yarısından fazlası taranmıştır. Dört yüz on üç adet otsu bitkinin toprak üstü aksamı ile bunların yaşadığı 192 serpantin alanından yüzey toprak örnekleri (0-15 cm) toplanmıştır. Karşılaştırmalı haritaların hazırlanmasında iklim yüzeylerinin ve analizlerinin elde olunabilmesi için, sayısal yükselti modeli (DEM), ANUSPLIN ve ArcGIS 8.1 yazılım paketlerinden yararlanılmıştır. Sera ve iklim odası denemelerinde, bilimsel açıdan kabul görmüş Ni hiper toplayıcı taksonların yanı sıra kolay çıkış yapan türler test edilmiştir. Sonuçlar, bir elementin alımında bitki türünün duyarlılık veya direncinin topraktaki miktarından daha önemli olduğunu göstermiştir. Topraktaki DTPA ile ekstrakte edilebilir Ni miktarı ile o toprakta yetişen bitkinin biriktirdiği Ni miktarı yönünden, hiper toplayıcı Brassicaceae türleri arasında önemli farklar olduğu belirlenmiştir. Türkiye endemiği olan Isatis pinnatiloba’nın, nikel hiper toplayıcısı türler arasına alınması gerektiği belirlenmiştir. Fitoremidasyon tekniklerinin uygulamadaki darboğazları ve sakıncaları tartışılmıştır.
Anahtar Kelime: doğal türler nikel serpantin topraklar Türkiye birikim

Konular: Biyoloji

Türk serpantin topraklarında doğal bitkilerce hiper nikel birikimi

Öz:
Abstract: Natural plants in Turkish serpentine soils were surveyed to determine their Ni accumulation capability. Geographic distribution and diethylene triamine pentaacetic acid (DTPA)-extractable nickel contents of the western Anatolian serpentine soils and their vegetative contents were studied to find the possible relationships between the phytoavailable Ni amount in the soil and the Ni content of potential accumulator plants. Over half of the surface area of Turkey was targeted in the study. Aboveground parts of 413 herbaceous plants and the surface soil (0-15 cm) of 192 serpentine samples were collected. A digital elevation model and ANUSPLIN and ArcGIS 8.1 soft ware packages were employed for generation of climatic surfaces and analysis in preparation of comparative maps. Scientifically approved Ni hyperaccumulator plant taxa as well as readily emerging species were tested under greenhouse and climate chamber conditions. The varying magnitude of nickel determined in the aboveground parts of the test plants indicated that the resistance or vulnerability and Ni requirements of a plant species were species-specific and were more effective than the Ni amount in the soil on the uptake of the element. Significant differences were found between the amount of DTPAextractable Ni in the soil and the Ni content of hyperaccumulator Brassicaceae plants grown in the same soil bodies. Isatis pinnatiloba, which is endemic to Turkey, was introduced as a nickel hyperaccumulator species. Bottlenecks and drawbacks of phytoremediation techniques for commercial use were discussed.
Anahtar Kelime: nickel serpentine soils Turkey accumulation native species

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adriano DC, Wenzel WW, Vangronsveld J & Bolan NS (2004). Role of assisted natural remediation in environmental cleanup. Geoderma 122: 121-142.
  • Baker AJM & Brooks RR (1989). Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1: 81- 126.
  • Baker AJM, McGrath SP, Reeves RD & Smith JAC (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds.) Phytoremediation of Contaminated Soil and Water, pp. 85-107. Boca Raton, FL: Lewis Publishers.
  • Baker AJM & Proctor J (1990). The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematics and Evolution Evol 173: 91-108.
  • Baker AJM & Whiting SN (2002). In search of the Holy Grail - a further step in understanding metal hyperaccumulation? New Phytologist 155: 1-4.
  • Boyd RS, Jaffré T & Odom JW (1999). Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31: 403-410.
  • Branquinho C, Serrano HC, Pinto MJ & Martins-Loução MA (2007). Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environmental Pollution 146: 437-443.
  • Brooks RR, Morrison RS, Reeves RD, Dudley TR & Akman Y (1979). Hyperaccumulation of nickel by Alyssum linnaeus (Cruciferae). Proceedings of the Royal Society B: Biological Sciences 203: 387- 403.
  • Chaney RL (1983). Plant uptake of inorganic waste constitutes In: Parr JF, Marsh PB & Kla JM (eds.) Land Treatment of Hazardous Wastes, pp. 50-76. Park Ridge, NJ: Noyes Data Corporation.
  • Davis PH (ed.) (1965-1985). Flora of Turkey and the East Aegean Islands. Vols. 1-9. Edinburgh: Edinburgh University Press.
  • Davis PH & Heywood VH (1973). Principles of Angiosperm Taxonomy. New York: Robert E. Kieger Publishing Co.
  • Davis PH, Mill RR & Tan K (1988). Flora of Turkey and the East Aegean Islands (Suppl. 1), Vol. 10. Edinburgh: Edinburgh University Press.
  • Ghaderian SM, Mohtadi A, Rahiminejad MR & Baker AJM (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145: 293-298.
  • Golightly JP (1981). Nickeliferous laterite deposits. Econ Geol 75: 710-735.
  • Haq AU, Bates TE & Soon YK (1980). Comparison of extractants for plant-available zinc, cadmium, nickel, and copper in contaminated soils. Soil Sciences Society of America Journal 44: 772-777.
  • Holmgren PK, Holmgren NH & Barnett LC (eds.) (1990). Index Herbariorum. Part I: The Herbaria of the World. Vol. 120. New York: New York Botanical Garden.
  • Hutchinson MF (1991). The application of thin plate smoothing splines to continent-wide data assimilation. In: Jasper JD (ed.) BMRC Research Report No. 27, Data Assimilation Systems, pp. 104-113. Melbourne: Bureau of Meteorology.
  • Kalra YP & Maynard DG (1998). Microwave digestion of plant tissue in an open vessel. In: Kalra YP (ed.) Handbook of Reference Methods for Plant Analysis, pp. 63-67. Boca Raton, FL: CRC Press.
  • Kirkham MB (2006). Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137: 19-32.
  • Leita L, De Nobili M, Mondini C, Muhlbachova G, Marchiol L, Bragato G & Contin M (1999). Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biology and Fertility of Soils 28: 371-376.
  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves RD & Nelkin J (2003). Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and Soil 249: 107-115.
  • Lindsay WL & Norvell WA (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sciences Society of America Journal 42: 421-428.
  • Miller OR (1998). Nitric perchloric acid wet digestion in an open vessel. In: Kalra YP (ed.) Handbook of Reference Methods for Plant Analysis, pp. 57-59. Boca Raton, FL: CRC Press.
  • Misra SG & Pande P (1974). Evaluation of a suitable extractant for available nickel in soils. Plant and Soil 41: 697-700.
  • Mutlu B (2010). New morphological characters for some Erysimum (Brassicaceae) species. Turkish Journal of Botany 34: 115-121.
  • Özhatay FN, Kültür Ş & Gürdal MB (2011). Check-list of additional taxa to the supplement Flora of Turkey V. Turkish Journal of Botany 35: 589-624.
  • Özhatay N, Kültür Ş & Aslan S (2009). Check-list of additional taxa to the supplement Flora of Turkey IV. Turkish Journal of Botany 33: 191-226.
  • Pollard AJ, Powell KD, Harper FA & Smith JAC (2002). The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences 21: 539-566.
  • Reeves RD (2006). Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G & Goncharova N (eds.) NATO Science Series. Earth and Environmental Sciences, p. 345. Dordrecht: Springer.
  • Reeves RD & Adıgüzel N (2008). The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: a review with new data. Turkish Journal of Biology 32: 143-153.
  • Reeves RD, Adıgüzel N & Baker AJM (2009). Nickel hyperaccumulation in Bornmuellera kiyakii Aytaç & Aksoy and associated plants of the Brassicaceae from Kızıldağ (Derebucak, Konya-Turkey). Turkish Journal of Botany t 33: 33-40.
  • Reeves RD & Baker AJM (2000). Metal-accumulating plants. In: Raskin I & Ensley BD (eds.) Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, pp. 193-229. New York: John Wiley & Sons.
  • Reeves RD, Kruckeberg AR, Adıgüzel N & Krämer U (2001). Studies on the flora of serpentine and other metalliferous areas of western Turkey. South African Journal of Sciences 97: 513-517.
  • Roosens N, Vebruggen N, Meerts P, Ximénez-Embún P & Smith JAC (2003). Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell and Environment 26: 1657-1672.
  • Schellmann W (1983). Geochemical principles of lateritic nickel ore formation. In: Melfi AJ & Carvalho A (eds.) Proceedings of the 2nd International Seminar on Lateritisation Processes, pp. 119- 135. Sao Paulo.
  • Seregin IV & Kozhevnikova AD (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology 53: 257-277.
  • Tunçay T, Uğurlu A, Kesim A, Erdoğan E, Erpul G & Bayramin İ (2006). Using geographic information systems to generate Turkey Climate Classification Map. In: Proceedings of 18th International Soil Meeting on Soils Sustaining Life on Earth, Managing Soil and Technology, pp. 346-355. Şanlıurfa.
  • Ure AM (1996). Single extraction schemes for soil analysis and related applications. The Science of the Total Environment 78: 3-10.
  • Wang XP, Shan XQ, Zhang SZ & Wen B (2004). A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55: 811-822.
  • Zhang L, Angle JS & Chaney RL (2007). Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytologist 173: 509- 516.
APA Altınözlü H, KARAGÖZ A, POLAT T, ÜNVER İ (2012). Nickel hyperaccumulation by natural plants in Turkish serpentine soils. , 269 - 280.
Chicago Altınözlü Haşim,KARAGÖZ Alptekin,POLAT TURGAY,ÜNVER İlhami Nickel hyperaccumulation by natural plants in Turkish serpentine soils. (2012): 269 - 280.
MLA Altınözlü Haşim,KARAGÖZ Alptekin,POLAT TURGAY,ÜNVER İlhami Nickel hyperaccumulation by natural plants in Turkish serpentine soils. , 2012, ss.269 - 280.
AMA Altınözlü H,KARAGÖZ A,POLAT T,ÜNVER İ Nickel hyperaccumulation by natural plants in Turkish serpentine soils. . 2012; 269 - 280.
Vancouver Altınözlü H,KARAGÖZ A,POLAT T,ÜNVER İ Nickel hyperaccumulation by natural plants in Turkish serpentine soils. . 2012; 269 - 280.
IEEE Altınözlü H,KARAGÖZ A,POLAT T,ÜNVER İ "Nickel hyperaccumulation by natural plants in Turkish serpentine soils." , ss.269 - 280, 2012.
ISNAD Altınözlü, Haşim vd. "Nickel hyperaccumulation by natural plants in Turkish serpentine soils". (2012), 269-280.
APA Altınözlü H, KARAGÖZ A, POLAT T, ÜNVER İ (2012). Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turkish Journal of Botany, 36(3), 269 - 280.
Chicago Altınözlü Haşim,KARAGÖZ Alptekin,POLAT TURGAY,ÜNVER İlhami Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turkish Journal of Botany 36, no.3 (2012): 269 - 280.
MLA Altınözlü Haşim,KARAGÖZ Alptekin,POLAT TURGAY,ÜNVER İlhami Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turkish Journal of Botany, vol.36, no.3, 2012, ss.269 - 280.
AMA Altınözlü H,KARAGÖZ A,POLAT T,ÜNVER İ Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turkish Journal of Botany. 2012; 36(3): 269 - 280.
Vancouver Altınözlü H,KARAGÖZ A,POLAT T,ÜNVER İ Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turkish Journal of Botany. 2012; 36(3): 269 - 280.
IEEE Altınözlü H,KARAGÖZ A,POLAT T,ÜNVER İ "Nickel hyperaccumulation by natural plants in Turkish serpentine soils." Turkish Journal of Botany, 36, ss.269 - 280, 2012.
ISNAD Altınözlü, Haşim vd. "Nickel hyperaccumulation by natural plants in Turkish serpentine soils". Turkish Journal of Botany 36/3 (2012), 269-280.