Yıl: 2011 Cilt: 35 Sayı: 5 Sayfa Aralığı: 501 - 514 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum)

Öz:
Domates dünyada üretimi ve tüketimi en çok yapılan sebzelerden biridir. Bundan dolayı birçok bitki ıslahçısı bugüne kadar domateste ürün verimliliği, meyve büyüklüğü, şekli ve rengi gibi tarımsal açıdan önem teşkil eden karakterlerin geliştirilmesi için çaba sarfetmişlerdir. İnsan sağlığına verilen önemin artmasıyla beraber, bitki ıslahçıları artık meyve ve sebzelerde antioksidant karakterleri gibi sağlıkla ilişkili karakterlerin de geliştirilmesini dikkate almaya başlammışlardır. Yapılan bu çalışmada, 152 bireyden oluşan BC2F2 Lycopersicon hirsutum populasyonu kullanılarak, hem sağlık açısından hem de tarımsal açıdan önem teşkil eden karakterler domates genomunda haritalanmıştır. Bu amaç doğrultusunda, populasyondaki bütün bireyler fenotipik ve genotipik olarak karakterize edildikten sonra analiz edilen bütün karakterler için toplamda 75 QTL (genetik lokus) belirlenmiştir. Bu 75 QTL içerisinden, suda çözünen toplam antioksidant aktivitesi, C vitamini, toplam fenolik, toplam flavonoid ve likopen miktarını da içerisine alan beş antioksidant karakteri için 28 adet, tarımsal açıdan önem teşkil eden dış ve iç meyve rengi, meyve ağırlığı, sertliği, şekli, gövde izi, lokul sayısı ve perikarp kalınlığı gibi sekiz karakter için ise toplamda 47 QTL belirlenmiştir. Sonuç olarak belirlenen bu QTL’lerle ilişkili olan markörler, markör dayalı seçilim tekniği (MAS) kullanılmak suretiyle birinci sınıf kültür domates hatları geliştirilmesinde kullanılabilir.
Anahtar Kelime: doku sertliği domates renk şekil niceliksel özellikler flavonoidler Lycopersicon esculentum meyve iriliği meyve ağırlığı antioksidanlar tarımsal özellikler likopen

Konular: Orman Mühendisliği

Domates (Lycopersicon esculentum)’te antioksidant ve agronomik olarak önemli karakterler için kantitatif karakter lokus analizleri

Öz:
Tomato is one of the most widely produced and consumed vegetable crops worldwide. Plant breeders have usually focused on improvement of horticulturally important traits such as yield, fruit size, shape and colour. With increased attention on human health, however, plant breeders also consider the improvement of health-related traits of fruits and vegetables such as antioxidant characters. In the present study, genes controlling both health-related and horticulturally important traits were mapped in the tomato genome using 152 Lycopersicon hirsutum BC2F2 individuals. For this aim, all plants were phenotypically and genotypically characterised and a total of 75 QTLs were identified for all traits. Of the 75 QTLs, 28 were identified for 5 antioxidant traits including total water soluble antioxidant capacity, vitamin C, total phenolics, total flavonoids, and lycopene contents, and 47 QTLs were identifi ed for 8 agronomic traits including fruit weight, external and internal fruit colour, fruit firmness, fruit shape, stem scar size, locule number, and wall thickness. Markers linked with these QTLs can be used in marker assisted selection (MAS) for improvement of elite tomato lines.
Anahtar Kelime: flavonoids Lycopersicon esculentum fruit size fruit weight antioxidants agronomic characteristics lycopene firmness tomatoes colour shape quantitative traits

Konular: Orman Mühendisliği
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Arab L, Steck S (2000) Lycopene and Cardiovascular Disease. Am J Clin Nutr 71: 1691-1695.
  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis in tomato: I. Identifi cation of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97: 381-397.
  • Bramley PM (2000) Is lycopene beneficial to human health? Phytochemistry 54: 233-236.
  • Doğanlar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45: 1-15.
  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identifi cation and fi ne mapping of yield- associated QTL. Genetics 141: 1147-1162.
  • Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap EVD, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85-88.
  • Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46: 235-243.
  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Th eor Appl Genet 108: 485-496.
  • Frary A, Kegeli MA, Okmen B, Sigva HO, Yemenicioglu A, Doganlar S (2008) Water-soluble antioxidant potential of Turkish pepper cultivars. J Am Soc Hortic Sci 43: 631-636.
  • Frary A, Göl D, Keleş D, Ökmen B, Pınar H, Şığva HÖ, Yemenicioğlu A, Doğanlar S (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biology 10: 58-74.
  • Fulton TM, Grandillo S, Beck-Bunn T, Friedman E, Frampton A, Lopez J, Petiard J, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum X Lycopersicon parvifl orum cross. Theor App Genet 92: 935- 951.
  • Hanson PM, Yang R, Wu J, Chen J, Ledesma D, Tsou SCS (2004) Variation for antioxidant activity and antioxidants in tomato. J Am Soc Hortic Sci 129: 704-711.
  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specifi c PCR-based markers. Th e Plant Journal 4: 403-410.
  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the smallfruited wild species Lycopersicon pimpinellifolium and L. esculentum var. giant heitloom. Genetics 158: 413-422.
  • Liu J, Eck JV, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS 99: 13302-13306.
  • Madhavi DL, Deshpande SS, Salunkhe DK (1996) Food antioxidants: Technological, toxicological, and health perspectives. Marcel Dekke, Inc. New York.
  • May MJ, Hammond-Kosack KE, Jones JDG (1996) Involment of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race-specifi c elicitors of Cladosporium fulvum. Plant Physiol 110: 1367-1379.
  • Mittova V, Guy M, Tal M, Volokita M (2002) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radic Res 36: 195- 202.
  • Mittova M, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55: 1105-1113.
  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100: 471-479.
  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theor App Genet 102: 572-590.
  • Nelson J (1997) QGENE: soft ware for marker-based genomic analysis and breeding. Molecular Breeding. 3: 239-245.
  • Nielsen SS (2003) Food Analysis Laboratory Manual. Springer, New York: 55-60.
  • Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Sci Tech 40: 1-11.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237.
  • Roberfroid MB (2000) Concepts and strategy of functional food sciences: the European perspective. Am J Clin Nut 71: 1660- 1664.
  • Rodriguez EB, Flavier ME, Rodriguez-Amaya DB, Amaya-Farfan J (2006) Phytochemicals and functional foods. Current situation and prospect for developing countries. Segurança Alimentar e Nutricional 13: 1-22.
  • Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennet A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 122: 71-77.
  • Sadler G, Davis J, Dezman D (1990) Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenate. J Food Sci 55: 1460-1461.
  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Viticult 16: 144-158.
  • Solanaceae Genomics Network (2008). http://www.sgn.cornell.edu. Cited 2008.
  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143: 1943-1953.
  • Tanksley SD, Gana1 M, Prince J, deVincente C, Bonierbale M, Broun P, Fulton T, Giovannoni J, Grandillo S, Martin G, Messeguer R, Miller J, Miller L, Paterson A, Pineda O, Roder M, Wing R, Wu W, Young N (1992) High density molecular maps of the tomato and potato genomes. Genetics 132: 1141-1160.
  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted into elite breeding lines. Th eor Appl Genet 92: 191-203.
  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063- 1066.
  • Toor RK, Savage GP, Lister CE (2006) Seasonal variations in the antioxidant composition of greenhouse grown tomato. J Food Compos Anal 19: 1-10.
  • Yao LH, Jiang YM, Shi J, Tomas-Barberan FA, Datta N, Singanusong N, Chen SS (2004) Flavonoids in food and their health benefits. Plant Food Hum Nutr 59: 113-122.
  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of fl avonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64: 555-559.
APA ÖKMEN b, ŞIĞVA H, GÜRBÜZ ÇOLAK N, ÜLGER M, Frary A, Doganlar S (2011). Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). , 501 - 514.
Chicago ÖKMEN bilal,ŞIĞVA Hasan Özgür,GÜRBÜZ ÇOLAK NERGİZ,ÜLGER Mehmet,Frary Anne,Doganlar Sami Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). (2011): 501 - 514.
MLA ÖKMEN bilal,ŞIĞVA Hasan Özgür,GÜRBÜZ ÇOLAK NERGİZ,ÜLGER Mehmet,Frary Anne,Doganlar Sami Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). , 2011, ss.501 - 514.
AMA ÖKMEN b,ŞIĞVA H,GÜRBÜZ ÇOLAK N,ÜLGER M,Frary A,Doganlar S Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). . 2011; 501 - 514.
Vancouver ÖKMEN b,ŞIĞVA H,GÜRBÜZ ÇOLAK N,ÜLGER M,Frary A,Doganlar S Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). . 2011; 501 - 514.
IEEE ÖKMEN b,ŞIĞVA H,GÜRBÜZ ÇOLAK N,ÜLGER M,Frary A,Doganlar S "Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum)." , ss.501 - 514, 2011.
ISNAD ÖKMEN, bilal vd. "Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum)". (2011), 501-514.
APA ÖKMEN b, ŞIĞVA H, GÜRBÜZ ÇOLAK N, ÜLGER M, Frary A, Doganlar S (2011). Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). Turkish Journal of Agriculture and Forestry, 35(5), 501 - 514.
Chicago ÖKMEN bilal,ŞIĞVA Hasan Özgür,GÜRBÜZ ÇOLAK NERGİZ,ÜLGER Mehmet,Frary Anne,Doganlar Sami Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). Turkish Journal of Agriculture and Forestry 35, no.5 (2011): 501 - 514.
MLA ÖKMEN bilal,ŞIĞVA Hasan Özgür,GÜRBÜZ ÇOLAK NERGİZ,ÜLGER Mehmet,Frary Anne,Doganlar Sami Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). Turkish Journal of Agriculture and Forestry, vol.35, no.5, 2011, ss.501 - 514.
AMA ÖKMEN b,ŞIĞVA H,GÜRBÜZ ÇOLAK N,ÜLGER M,Frary A,Doganlar S Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). Turkish Journal of Agriculture and Forestry. 2011; 35(5): 501 - 514.
Vancouver ÖKMEN b,ŞIĞVA H,GÜRBÜZ ÇOLAK N,ÜLGER M,Frary A,Doganlar S Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum). Turkish Journal of Agriculture and Forestry. 2011; 35(5): 501 - 514.
IEEE ÖKMEN b,ŞIĞVA H,GÜRBÜZ ÇOLAK N,ÜLGER M,Frary A,Doganlar S "Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum)." Turkish Journal of Agriculture and Forestry, 35, ss.501 - 514, 2011.
ISNAD ÖKMEN, bilal vd. "Quantitative trait loci (QTL) analysis for antioxidant and agronomically important traits in tomato (Lycopersicon esculentum)". Turkish Journal of Agriculture and Forestry 35/5 (2011), 501-514.