HAKAN YAMAN
(Abant İzzet Baysal Üniversitesi, Bolu, Türkiye)
Aysun UMAY
(Hacettepe Üniversitesi, Ankara, Türkiye)
Yıl: 2013Cilt: 28Sayı: 1ISSN: 1300-5340 / 2536-4758Sayfa Aralığı: 405 - 416Türkçe

118 0
ilköğretim öğrencilerinin sunum biçimlerine göre matematiksel örüntüleri algılayışları
Bu çalışmanın amacı, ilköğretim 3, 4, 5, 6 ve 7. sınıf öğrencilerinin örüntü sunum biçimlerine göre matematiksel örüntüleri algılayışları ve performanslarının belirlenmesidir. Uygulama Ankara şehir merkezindeki sosyo- ekonomik düzeyi orta seviyede olan iki ilköğretim okulundaki 317 öğrenci üzerinde gerçekleştirilmiştir. Araştırma verilerinin toplanması için, araştırmacı tarafından “Matematiksel Örüntü Başarı Testi” adı altında 12 soruluk bir test geliştirilmiştir. Geliştirilen testin güvenirlik katsayısı 0,88 olarak bulunmuştur. Araştırma sonucunda öğrencilerin sınıf seviyeleri açısından örüntülerin sunum biçimlerine göre matematiksel örüntüler ile ilgili performansları arasında anlamlı farklılıklar olduğu bulunmuştur. “Matematiksel Örüntü Başarı Testi”nde, öğrenciler en yüksek puanı “Tablo” biçiminde sunulan örüntü sorularında almışlardır. Diğer sunum biçimlerinde de puan sıralamasının “Şekil”, “Sözel Problem” ve “Sayı Dizisi” biçiminde devam ettiği görülmüştür.
Fen > Temel Bilimler > Matematik
Sosyal > Eğitim, Eğitim Araştırmaları
Sosyal > Eğitim, Özel
DergiAraştırma MakalesiErişime Açık
  • Burns, M. (2000). About teaching mathematics. Sausalito, CA: Math Solutions Publications Bruner, J. S. (1966). Toward a theory of instruction. Cambridge Mass: Harvard University Press.
  • Devlin, K. (1998). Life by The Numbers. Canada: John Wiley ve Sons English, L. & Warren, E. (1998). Introducing the variable through pattern exploration. Mathematics Teacher. 91, 2, 166-171
  • Ferrini-Mundy, J., Lappan, G. & Phillips, E. (1997). Experiences with patterning. Teaching Children Mathematics, (3)6, 282- 286.
  • Fouche, K. K. (1997). Algebra for everyone: Start early. Mathematics Teaching in the Middle School, (2)4, 226-229.
  • Fraenkel, J. R. & Wallen, N. E. (2006). How to Design and Evaluate Research in Education (6th edition). USA: Mc Graw Hill, Inc.
  • Jones, L. (1993) Algebra in the primary school. Education, 3-13, June, s. 27-31.
  • Lannin, J. K. (2002). Developing middle school students’ understanding of recursive and explicit reasoning. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA
  • Lannin, J. K. (2003). Developing algebraic reasoning through generalization. Mathematics Teaching in the Middle School, 8(7). 342-348
  • Ley, A. F. (2005). A cross-sectional investigation of elementary school student’s ability to work with linear generalizing patterns: The impact of format and age on accuracy and strategy choice. Yayınlanmamış Yüksek Lisans Tezi, Toronto, Kanada
  • Looney, C. L. (2004). A study of students’ understanding of patterns and functions in grades 3-5. Yayınlanmamış Doktora Tezi, Boston, USA
  • MacGregor, M. & Stacey, K. (1995). The effect of different approaches to algebra on students’ perceptions of functional relationships. Mathematics Education Research Journal. Vol. 7, No. 1, 69-85
  • Martinez, M. & Brizuela, B. M. (2006). A third grader’s way of thinking about linear function tables. Journal of Mathematical Behavior. 25, 285-298.
  • Mottershead. L. (1995). Investigations in Mathematics. Oxford, Basil Blackwell.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM
  • Olkun, S. ve Toluk-Uçar, Z. (2007). İlköğretimde Etkinlik Temelli Matematik Öğretimi. Ankara: Maya Akademi
  • Orton, A. & Orton, J. (1999). Pattern and the approach to algebra. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. s. 104-120. London: Cassel
  • Orton, J., Orton, A. & Roper, T. (1999). Pictorial and Practical Context and the Presentation of Pattern. . In A. Orton (Ed.),
  • Pattern in the Teaching and Learning of Mathematics. s. 121-136. London: Cassel Pegg, J. & Redden, E. (1990). Procedures for, and experiences in introducing algebra in New South Wales. Mathematics Teacher. 83, 5, 386-391
  • Schliemann, A.D., Carraher, D. W. & Brizuella, B. (2001). When tables become function tables. Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education. Vol. 4 (s.145-152). Utrecht, The Netherlands
  • Schultz, J. E. (1991). Teaching informal algebra. Arithmetic Teacher, (38), 34-37.
  • Smith, E.. (2003). Stasis and change: Integrating pattern, functions, and algebra throughout the K-12 curriculum. In J.Kilpatrick, W. G.Martin, & D.Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 136-150). Reston , VA : National Council of Teachers of Mathematics.
  • Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics. 20, 147- 164.
  • Steele, D. (2005). Using writing to access students’ schemata knowledge for algebraic thinking. School Science and Mathematics. 103(3), 142-154.
  • Tanışlı, D. (2008). İlköğretim beşinci sınıf öğrencilerinin örüntülere ilişkin anlama ve kavrama biçimlerinin belirlenmesi. Yayınlanmamış Doktora Tezi, Eskişehir, Türkiye
  • Türk Dil Kurumu Sözlüğü, http://www.tdk.gov.tr adresinden 12.03.2009 tarihinde alınmıştır.
  • Van De Walle, J. A. (2004). Elementary and Middle School Mathematics: Teaching Developmentally. 5th ed. Boston: Allyn and Bacon.
  • Willoughby, S.S. (1997). Functions from kindergarten through sixth grade. Teaching Children Mathematics, 3, 314-318
  • Zaskis, R. & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics. 49, 379-402

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.