Yıl: 2013 Cilt: 27 Sayı: 2 Sayfa Aralığı: 105 - 110 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Kanser immün terapi ve monoklonal antikorlar

Öz:
Kanser immün terapi preklinik çalışmaların yoğun olduğu ve klinikte uygulamaların giderek arttığı kanser tedavisi için modern tıbbın adjuvan yöntemlerinden biridir. Kanser immün terapide aşı ve hücresel tedavi yöntemlerine göre daha fazla kullanım alanı bulunan yöntem monoklonal antikorların terapide kullanılmasıdır. Kanser hücrelerinde yüksek miktarda ve doku spesifik olarak üretilen reseptörler ile büyüme faktörlerini hedef alan monoklonal antikorlar klinik uygulamalara en fazla aktarılan ve onaylanan kanser immünoterapi uygulamasıdır. Klinikte kansere yönelik olarak halen onaylanmış ve kullanılmakta olan en az 12 adet monoklonal antikor bulunmaktadır. Bu monoklonal antikorlar meme, akciğer kanseri, kolorektal kanser, renal hücre kanseri, melanoma, çeşitli lenfoma ve lösemilerde tedavide kullanılmaktadır. Kanser immün terapide kullanılan monoklonal antikorlar, vasküler endotelyal büyüme faktörü (VEGF), epidermal büyüme faktörü reseptörü (EGFR), insan epidermal büyüme faktörü reseptörü 2 (HER2) gibi kanser progresyonunu destekleyen büyüme faktörlerini veya CD52 (Cluster of Differentiation 52) ve CD20 (Cluster of Differentiation Antigen 20) gibi kanser hücrelerinde spesifik olarak üretilen farklılaşma antijenlerini hedef alır. Monoklonal antikor üretim metodolojisi farelerin spesifik antijenlerle aşılanmasına ve B lenfositlerle myeloma kanser hücrelerinin hibridoma oluşturmasına dayanmaktadır. Bu teknikle tıpta devrim olarak nitelendirilebilecek şekilde yeni bir ilaç sınıfı doğmuş ve monoklonal antikorlar, kanser dahil çeşitli hastalıkların tedavisinde kullanılır olmuştur. Monoklonal antikorların kanser immünterapide etkinliği üç ana mekanizmaya dayanır. Bu mekanizmalar, 1) kanser hücrelerinin bölünme ve anjiyojenezde kullandıkları sinyal yolaklarını harekete geçiren faktörlerin ve reseptörlerin antikor bağlanmasıyla inhibe edilmesini, 2) antikora bağlı hücresel sitotoksisiteyi (ADCC) ve 3) komplement aktivasyonu ile komplemente bağlı sitotoksisiteyi (CDC) içerirler. Sonuç olarak yapılan preklinik çalışmalarla kanser oluşumu ve progresyonunda rol alan yeni hedef proteinler tespit edilmekte ve bunlara karşı etkin olabilecek monoklonal antikor üretim çalışmaları ve klinik faz çalışmaları devam etmektedir.
Anahtar Kelime:

Konular: Hücre ve Doku Mühendisliği Hematoloji Onkoloji

Cancer immunotherapy and monoclonal antibodies

Öz:
Cancer immunotherapy which is studied intensely in preclinical studies and being applied in clinics, is one of the adjuvant therapies for cancer in modern medicine. Use of monoclonal antibodies is more common in clinics in cancer immunotherapy compared to cancer vaccines and cellular therapies. Monoclonal antibodies targeting overexpressed and tissue specific receptors or growth factors in cancer cells are most common and clinically approved application of cancer immunotherapy. Currently for cancer immunotherapy, there are at least 12 approved monoclonal antibodies in clinical use. These monoclonal antibodies are being utilized for the therapy of breast cancer, lung cancer, colorectal cancer, renal cell cancer and several lymphomas and leukemias. Monoclonal antibodies used in cancer immunotherapy target factors supporting cancer progression such as vascular endothelial growth factor, epidermal growth factor and human epidermal growth factor 2; and target tissue specific differentiation antigens in tumor cells such as CD20 and CD52. The methodology of monoclonal antibody production is based on the immunization of mice with specific antigens, and on the generation of hybridoma with myeloma cancer cells and B lymphocytes. The new class of drugs was born with this technique and can be described as a revolution in the medicine and monoclonal antibodies have been used to treat various diseases, including cancer. The effectiveness of monoclonal antibodies on the cancer immunotherapy is based on the three main mechanisms. These mechanisms contain i) the antibody binding mediated inhibition of the factors and receptors which stimulate the signaling pathways used in the proliferation and angiogenesis of cancer cells, ii) antibody-dependent cellular cytotoxicity (ADCC), and iii) activation of complement by complement dependent cytotoxicity (CDC). As a result, the new target proteins involved in cancer development and progression are being identified continuously in the pre-clinical studies, and the studies of monoclonal antibody production that could be effective against them and clinical phase studies are being continued.
Anahtar Kelime:

Konular: Hücre ve Doku Mühendisliği Hematoloji Onkoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207–221.
  • 2. Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro- Teulon I. Anti-HER2 vaccines: New prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59: 1295-312.
  • 3. Cohen RB. Epidermal growth factor receptor as a therapeutic target in colorectal cancer. Clin Colorectal Cancer 2003; 2: 246–251.
  • 4. Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer- testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187: 265–270.
  • 5. Srinivasan R, Wolchok JD. Tumor antigens for cancer immunotherapy: Therapeutic potential of xenogeneic DNA vaccines. J Transl Med 2004; 2: 12.
  • 6. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411–422.
  • 7. Waldmann TA. Immunotherapy: past, present and future. Nature Medicine 2003; 9: 269–277.
  • 8. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.
  • 9. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.
  • 10. Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol 2002; 20: 205–213.
  • 11. Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994; 83: 435–445.
  • 12. Hamid O. Emerging treatments in oncology: focus on tyrosine kinase (erbB) receptor inhibitors. J Am Pharm Assoc 2004; 44: 52-8.
  • 13. Aifa S, Rebai A. ErbB antagonists patenting: "playing chess with cancer". Recent Pat Biotechnol 2008; 2: 181- 187.
  • 14. Raffaele A, Michele C, Domenico C, et al. Panitumumab: a new frontier of target therapy for the treatment of metastatic colorectal cancer. Expert Review of Anticancer Therapy 2010; 10: 499-505.
  • 15. Press MF, Pike MC, Chazin VR, et al. HER-2/neu expression in nodenegative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res 1993; 53: 4960-4970.
  • 16. Ravdin PM, Chamness GC. The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm aborat development of other macromolecular markers-a review. Gene 1995; 159: 19-27.
  • 17. Seshadri R, Firgaira FA, Horsfall DJ, et al. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. J Clin Oncol 1993; 11: 1936-1942.
  • 18. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER2-2/neu oncogene. Science 1987; 235: 177-182.
  • 19. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707-712.
  • 20. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783-792.
  • 21. Chamuleau ME, van de Loosdrecht AA, Huijgens PC. Monoclonal antibody therapy in haematological malignancies. Curr Clin Pharmacol 2010; 5: 148-159.
  • 22. Maloney DG, Grillo-López AJ, White CA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients withrelapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188-2195.
  • 23. Wood AM. Rituximab: an innovative therapy for non- Hodgkin’s lymphoma. Am J Health Syst Pharm 2001; 58: 215-229
  • 24. Elloumi J, Jellali K, Jemel I, Aifa S. Monoclonal antibodies as cancer therapeutics. Recent Pat Biotechnol. 2012; 6: 45-56.
  • 25. Buggins AG, Mufti GJ, Salisbury J et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood 2002; 100: 1715-1720.
  • 26. Ratzinger G, Reagan JL, Heller G, Busam KJ, Young JW. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood 2003; 101: 1422- 1429.
  • 27. Piccaluga PP, Agostinelli C, Righi S, Zinzani PL, Pileri SA. Expression of CD52 in peripheral T-cell lymphoma. Haematologica 2007; 92: 566-567.
  • 28. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988; 332: 323-327.
  • 29. Beck KE, Blansfield JA, Tran KQ et al. Enterocolitis in Patients With Cancer After Antibody Blockade of Cytotoxic TLymphocyte– Associated Antigen 4. Journal of Clinical Oncology 2006: 24; 283-289.
  • 30. Mori T. Ipilimumab, a new molecular targeted therapy of malignant neoplastic disease. Gan To Kagaku Ryoho 2011; 38: 31-35.
  • 31. Kraft A, Weindel K, Ochs A, et al. Vascular endothelial growthfactor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 1999; 85: 178-187.
  • 32. Los M, Roodhart JM, Voest EE. Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. The Oncologist 2007; 12: 443-450.
  • 33. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497.
  • 34. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. Journal of Clinical Oncology 2010; 28: 4390-4399.
  • 35. Reslan L, Dalle S, Dumontet C. Understanding and circumventing resistance to anticancer monoclonal antibodies. Mabs 2009; 1: 222-229.
  • 36. Yamada T. Therapeutic monoclonal antibodies. Keio J Med. 2011; 60: 37-46.
  • 37. Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001; 2: 127-37.
  • 38. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99: 754-758.
  • 39. Racila E, Link BK, Weng WK, et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res 2008; 14: 6697-6703.
  • 40. Zhang W, Gordon M, Schultheis AM, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007; 25: 3712-8.
  • 41. Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu- positive metastatic breast cancer. J Clin Oncol 2008; 26: 1789-1796.
  • 42. Michnick SW, Sidhu SS. Submitting antibodies to binding arbitration. Nat Chem Biol 2008; 4: 326–329.
APA SAKALAR Ç, İZGİ K, CANATAN H (2013). Kanser immün terapi ve monoklonal antikorlar. , 105 - 110.
Chicago SAKALAR Çağrı,İZGİ Kenan,CANATAN Halit Kanser immün terapi ve monoklonal antikorlar. (2013): 105 - 110.
MLA SAKALAR Çağrı,İZGİ Kenan,CANATAN Halit Kanser immün terapi ve monoklonal antikorlar. , 2013, ss.105 - 110.
AMA SAKALAR Ç,İZGİ K,CANATAN H Kanser immün terapi ve monoklonal antikorlar. . 2013; 105 - 110.
Vancouver SAKALAR Ç,İZGİ K,CANATAN H Kanser immün terapi ve monoklonal antikorlar. . 2013; 105 - 110.
IEEE SAKALAR Ç,İZGİ K,CANATAN H "Kanser immün terapi ve monoklonal antikorlar." , ss.105 - 110, 2013.
ISNAD SAKALAR, Çağrı vd. "Kanser immün terapi ve monoklonal antikorlar". (2013), 105-110.
APA SAKALAR Ç, İZGİ K, CANATAN H (2013). Kanser immün terapi ve monoklonal antikorlar. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 27(2), 105 - 110.
Chicago SAKALAR Çağrı,İZGİ Kenan,CANATAN Halit Kanser immün terapi ve monoklonal antikorlar. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi 27, no.2 (2013): 105 - 110.
MLA SAKALAR Çağrı,İZGİ Kenan,CANATAN Halit Kanser immün terapi ve monoklonal antikorlar. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, vol.27, no.2, 2013, ss.105 - 110.
AMA SAKALAR Ç,İZGİ K,CANATAN H Kanser immün terapi ve monoklonal antikorlar. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi. 2013; 27(2): 105 - 110.
Vancouver SAKALAR Ç,İZGİ K,CANATAN H Kanser immün terapi ve monoklonal antikorlar. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi. 2013; 27(2): 105 - 110.
IEEE SAKALAR Ç,İZGİ K,CANATAN H "Kanser immün terapi ve monoklonal antikorlar." Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 27, ss.105 - 110, 2013.
ISNAD SAKALAR, Çağrı vd. "Kanser immün terapi ve monoklonal antikorlar". Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi 27/2 (2013), 105-110.