Yıl: 2013 Cilt: 30 Sayı: 1 Sayfa Aralığı: 1 - 7 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Effects of spaceflight on cells of bone marrow origin

Öz:
Uzay istasyonları, Ay ve uzak gezegenlerde insan yaşantısının sürdürülmesi her ne kadar bilim kurgu romanlarının öğesi olsa da, bugün uzay ajanslarının kısa vadeli hedefleri arasında yer göstermeye başlamıştır. Bu bilimsel derleme, insanoğlunun uzun süreli uzay uçuşları sırasında karşılaştığı biyomedikal problemleri sunma hedefiyle yazılmıştır. Özellikle kemik iliği kökenli kemik, kan ve bağışıklık hücrelerine yoğunlaşılan derlemede bu hücrelerin ağırlıksız ortamda yaşadığı sayısal ve fonksiyonel değişiklikler sunulmuştur. Mekanik kuvvet yoksunluğunun sadece özelleşmiş hücrelerde değil aynı zamanda kemik iliği içinde varolan öncül kök hücrelere olan etkisi de derlemeye eklenmiştir. Özetle, uzay uçuşları kemik iliğinde bulunan bütün hücrelerin düzenini bozduğu için, uzun süreli uçuşlarının sağlıklı gerçekleşme potansiyelinin ağırlıksız ortamın yarattığı ters etkileri ortadan kaldırabilecek yenilikçi biyomedikal çözümler ve uzay teknolojilerine bağımlı olacağı öngörülmüştür.
Anahtar Kelime:

Konular: Hematoloji

Uzay uçuşlarının kemik iliği kökenli hücreler üzerindeki etkileri

Öz:
Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types.
Anahtar Kelime:

Konular: Hematoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Hughes-Fulford M. To infinity ... and beyond! Human spaceflight and life science. FASEB J 2011;25:2858-2864.
  • 2. Augustine NR, Austin WM, Chyba C, Kennel CF Bejmuk BI, Crawley EF Lyles LL, Chiao L, Greason J, Ride SK. Seeking a human spaceflight program worthy of a great nation. Report to the President of the United States. Washington, DC: National Aeronautics and Space Administration; 2009.
  • 3. Williams DR. The biomedical challenges of space flight. Annu Rev Med 2003;54:245-256.
  • 4. Neel PL, Harris RW. Motion-induced inhibition of elongation and induction of dormancy in liquidambar. Science 1971;173:58-59.
  • 5. Zhou XL, Batiza AF Loukin SH, Palmer CP Kung C, Saimi Y. The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci U S A 2003;100:7105- 7110.
  • 6. Kruse K, Julicher F Oscillations in cell biology. Curr Opin Cell Biol 2005;17:20-26.
  • 7. Ingber DE. Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A 2005;102:11571- 11572.
  • 8. Orr AW, Helmke BP Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Dev Cell 2006;10:11-20.
  • 9. Smith SM, Wastney ME, Morukov BV, Larina IM, Nyquist LE, Abrams SA, Taran EN, Shih CY, Nillen JL, Davis-Street JE, Rice BL, Lane HW. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes. Am J Physiol 1999;277:R1-10.
  • 10. Cooper LF Harris CT, Bruder SP, Kowalski R, Kadiyala S. Incipient analysis of mesenchymal stem-cell-derived osteogenesis. J Dent Res 2001;80:314-320.
  • 11. Pittenger MF Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.
  • 12. Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001;414:118-121.
  • 13. Grompe M. Bone marrow-derived hepatocytes. Novartis Found Symp 2005;265:20-27.
  • 14. Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. Tissue Eng 2004;10:1093-1112.
  • 15. Lo CC, Scadden DT. The haematopoietic stem cell niche at a glance. J Cell Sci 2011;124:3529-3535.
  • 16. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Côté D, Rowe DW, Lin CP Scadden DT. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009;457:92-96.
  • 17. Kular J, Tickner J, Chim SM, Xu JK. An overview of the regulation of bone remodelling at the cellular level. Clinical Biochemistry 2012;45:863-873.
  • 18. Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J 1995;15:118-140.
  • 19. Dallas SL, Bonewald LF Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 2010;1192:437-443.
  • 20. Bonewald LF The amazing osteocyte. J Bone Miner Res 2011;26:229-238.
  • 21. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev 1996;17:308-332.
  • 22. LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990;5:843-850.
  • 23. Smith SM, Wastney ME, O'Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res 2005;20:208-218.
  • 24. Alexandre C, Vico L. Pathophysiology of bone loss in disuse osteoporosis. Joint Bone Spine 2011;78:572-576.
  • 25. LeBlanc A, Shackelford L, Schneider V. Future human bone research in space. Bone 1998;22(5 Suppl]:113S-116S.
  • 26. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 2000;355:1607-1611.
  • 27. Space Medicine, Space Life Science, Aerospace Biomedicine. United States: World Spaceflight News; 2003.
  • 28. Collet P Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 1997;20:547-551.
  • 29. Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F Alexandre C. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95]. Clin Chem 1998;44:578-585.
  • 30. Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res 1996;224:103-109.
  • 31. Hughes-Fulford M, Rodenacker K, Jutting U. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J Cell Biochem 2006;99:435-449.
  • 32. Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K. Suppression of osteoblastic phenotypes and modulation of pro- and anti-apoptotic features in normal human osteoblastic cells under a vector-averaged gravity condition. J Med Dent Sci 2003;50:167-176.
  • 33. Sarkar D, Nagaya T, Koga K, Nomura Y, Gruener R, Seo H. Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J Bone Miner Res 2000;15:489-498.
  • 34. Kumei Y, Shimokawa H, Katano H, Hara E, Akiyama H, Hirano M, Mukai C, Nagaoka S, Whitson PA, Sams CF Microgravity induces prostaglandin E2 and interleukin-6 production in normal rat osteoblasts: role in bone demineralization. J Biotechnol 1996;47:313-324.
  • 35. Basso N, Bellows CG, Heersche JN. Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 2005;36:173-183.
  • 36. Dehority W, Halloran BP, Bikle DD, Curren T, Kostenuik PJ, Wronski TJ, Shen Y, Rabkin B, Bouraoui A, Morey-Holton E. Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am J Physiol 1999;276:E62-E69.
  • 37. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 2006;21:605-615.
  • 38. Sakai A, Nakamura T. Changes in trabecular bone turnover and bone marrow cell development in tail-suspended mice. J Musculoskelet Neuronal Interact 2001;1:387-392.
  • 39. Silva I, Branco JC. Rank/Rankl/opg: literature review. Acta Reumatol Port 2011;36:209-218.
  • 40. Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 2004;145:2421-2432.
  • 41. Ozcivici E, Luu YK, Rubin CT, Judex S. Low-level vibrations retain bone marrow’s osteogenic potential and augment recovery of trabecular bone during reambulation. PLoS ONE 2010;5:e11178.
  • 42. Basso N, Jia Y, Bellows CG, Heersche JN. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats. Bone 2005;37:370-378.
  • 43. Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 2009;44:214-224.
  • 44. Lang TF LeBlanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res 2006;21:1224-1230.
  • 45. Martini F Ober WC. Fundamentals of Anatomy & Physiology. 7th ed. San Francisco, CA: Pearson Benjamin Cummings; 2006.
  • 46. Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH. Control of red blood cell mass in spaceflight. J Appl Physiol 1996;81:98-104.
  • 47. Rice L, Alfrey CP The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 2005;15:245-250.
  • 48. Udden MM, Driscoll TB, Pickett MH, Leach-Huntoon CS, Alfrey CP. Decreased production of red blood cells in human subjects exposed to microgravity. J Lab Clin Med 1995;125:442-449.
  • 49. Gunga HC, Kirsch K, Baartz F Maillet A, Gharib C, Nalishiti W, Rich I, Rocker L. Erythropoietin under real and simulated microgravity conditions in humans. J Appl Physiol 1996;81:761-773.
  • 50. Davis TA, Wiesmann W, Kidwell W, Cannon T, Kerns L, Serke C, Delaplaine T, Pranger A, Lee KP. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J Leukoc Biol 1996;60:69-76.
  • 51. Zou LX, Cui SY, Zhong JA, Yi ZC, Sun Y, Fan YB, Zhuang FY. Simulated microgravity induce apoptosis and down- regulation of erythropoietin receptor of UT-7/EPO cells. Adv Space Res 2010;46:1237-1244.
  • 52. Crucian BE, Cubbage ML, Sams CF Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interferon Cytokine Res 2000;20:547-556.
  • 53. Mills PJ, Meck JV, Waters WW, D’Aunno D, Ziegler MG. Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 2001;63:886-890.
  • 54. Stowe RP, Sams CF Mehta SK, Kaur I, Jones ML, Feeback DL, Pierson DL. Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 1999;65:179-186.
  • 55. Licato LL, Grimm EA. Multiple interleukin-2 signaling pathways differentially regulated by microgravity. Immunopharmacology 1999;44:273-279.
  • 56. Kaur I, Simons ER, Castro VA, Mark OC, Pierson DL. Changes in neutrophil functions in astronauts. Brain Behav Immun 2004;18:443-450.
  • 57. Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL. Changes in monocyte functions of astronauts. Brain Behav Immun 2005;19:547-554.
  • 58. Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol 2008;15:1523-1528.
  • 59. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 2006;6:107-116.
  • 60. Lai AY, Kondo M. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol 2008;20:207-212.
  • 61. Ichiki AT, Gibson LA, Jago TL, Strickland KM, Johnson DL, Lange RD, Allebban Z. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol 1996;60:37-43.
  • 62. Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS, Ferguson VL, Pecaut MJ. Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol 2009;106:194-202.
  • 63. Morukov B, Rykova M, Antropova E, Berendeeva T, Ponomaryov S, Larina I. T-cell immunity and cytokine production in cosmonauts after long-duration space flights. Acta Astronautica 2011;68:739-746.
  • 64. Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 2000;68:3147-3152.
  • 65. Klaus D, Simske S, Todd P, Stodieck L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 1997;143:449-455.
  • 66. Juergensmeyer MA, Juergensmeyer EA, Guikema JA. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci Technol 1999;12:41-47.
  • 67. Horneck G. Impact of microgravity on radiobiological processes and efficiency of DNA repair. Mutat Res 1999;430:221-228.
  • 68. Van Houdt R, Mijnendonckx K, Leys N. Microbial contamination monitoring and control during human space missions. Planetary Space Sci 2012;60:115-120.
  • 69. Stowe RP Pierson DL, Feeback DL, Barrett AD. Stress-induced reactivation of Epstein-Barr virus in astronauts. Neuroimmunomodulation 2000;8:51-58.
  • 70. Payne DA, Mehta SK, Tyring SK, Stowe RP, Pierson DL. Incidence of Epstein-Barr virus in astronaut saliva during spaceflight. Aviat Space Environ Med 1999;70:1211-1213.
  • 71. Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 2000;182:1761-1764.
  • 72. Plett PA, Frankovitz SM, Abonour R, Orschell-Traycoff CM. Proliferation of human hematopoietic bone marrow cells in simulated microgravity. In Vitro Cell Dev Biol Anim 2001;37:73-78.
  • 73. Plett PA, Abonour R, Frankovitz SM, Orschell CM. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol 2004;32:773-781.
  • 74. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T. Defects of B- cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635-658.
  • 75. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121:1109-1121.
  • 76. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, Garcia-Cardena G, Daley GQ. Biomechanical forces promote embryonic haematopoiesis. Nature 2009;459:1131-1135.
  • 77. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841-846.
  • 78. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836-841.
  • 79. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004;103:3258-3264.
  • 80. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J, Joe GJ, Hexner E, Choi Y, Taichman RS, Emerson SG. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007;109:3706-3712.
  • 81. Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro- platelet formation from CD34(+] hematopoietic progenitor cells. J Cell Physiol 2000;184:58-69.
  • 82. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem 2006;98:251-266.
  • 83. Naveiras O, Nardi V Wenzel PL, Hauschka PV Fahey F Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009;460:259-263.
  • 84. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 2010;6:50-59.
APA ÖZÇİVİCİ E (2013). Effects of spaceflight on cells of bone marrow origin. , 1 - 7.
Chicago ÖZÇİVİCİ ENGİN Effects of spaceflight on cells of bone marrow origin. (2013): 1 - 7.
MLA ÖZÇİVİCİ ENGİN Effects of spaceflight on cells of bone marrow origin. , 2013, ss.1 - 7.
AMA ÖZÇİVİCİ E Effects of spaceflight on cells of bone marrow origin. . 2013; 1 - 7.
Vancouver ÖZÇİVİCİ E Effects of spaceflight on cells of bone marrow origin. . 2013; 1 - 7.
IEEE ÖZÇİVİCİ E "Effects of spaceflight on cells of bone marrow origin." , ss.1 - 7, 2013.
ISNAD ÖZÇİVİCİ, ENGİN. "Effects of spaceflight on cells of bone marrow origin". (2013), 1-7.
APA ÖZÇİVİCİ E (2013). Effects of spaceflight on cells of bone marrow origin. Turkish Journal of Hematology, 30(1), 1 - 7.
Chicago ÖZÇİVİCİ ENGİN Effects of spaceflight on cells of bone marrow origin. Turkish Journal of Hematology 30, no.1 (2013): 1 - 7.
MLA ÖZÇİVİCİ ENGİN Effects of spaceflight on cells of bone marrow origin. Turkish Journal of Hematology, vol.30, no.1, 2013, ss.1 - 7.
AMA ÖZÇİVİCİ E Effects of spaceflight on cells of bone marrow origin. Turkish Journal of Hematology. 2013; 30(1): 1 - 7.
Vancouver ÖZÇİVİCİ E Effects of spaceflight on cells of bone marrow origin. Turkish Journal of Hematology. 2013; 30(1): 1 - 7.
IEEE ÖZÇİVİCİ E "Effects of spaceflight on cells of bone marrow origin." Turkish Journal of Hematology, 30, ss.1 - 7, 2013.
ISNAD ÖZÇİVİCİ, ENGİN. "Effects of spaceflight on cells of bone marrow origin". Turkish Journal of Hematology 30/1 (2013), 1-7.