Hasan Fatih ÇAY
(SB Antalya Eğitim ve Araştırma Hastanesi, Fiziksel Tıp ve Rehabilitasyon Kliniği, Antalya, Türkiye)
İLHAN SEZER
(SB Antalya Eğitim ve Araştırma Hastanesi, Fiziksel Tıp ve Rehabilitasyon Kliniği, Antalya, Türkiye)
Muhammet Kazım EROL
(Sağlık Bakanlığı, Antalya Eğitim ve Araştırma Hastanesi, Göz Hastalıkları Kliniği, Antalya, Türkiye)
Deniz ÇOBAN TURGUT
(Sağlık Bakanlığı, Antalya Eğitim ve Araştırma Hastanesi, Göz Hastalıkları Kliniği, Antalya, Türkiye)
Mehmet BULUT
(Sağlık Bakanlığı, Antalya Eğitim ve Araştırma Hastanesi, Göz Hastalıkları Kliniği, Antalya, Türkiye)
Tuncay ÇAKIR
(SB Antalya Eğitim ve Araştırma Hastanesi, Fiziksel Tıp ve Rehabilitasyon Kliniği, Antalya, Türkiye)
Naciye Füsun TOROMAN
(SB Antalya Eğitim ve Araştırma Hastanesi, Fiziksel Tıp ve Rehabilitasyon Kliniği, Antalya, Türkiye)
Yıl: 2014Cilt: 29Sayı: 3ISSN: 2148-5046 / 2618-6500Sayfa Aralığı: 178 - 185İngilizce

125 1
Retinotoxicity of hydroxychloroquine: ıs ıt possible to demonstrate by spectral domain optical coherence tomography before development? A cross sectional ınvestigation
Objectives: This study aims to evaluate the alterations of retinal layers in rheumatic patients treated with hydroxychloroquine but without the signs or symptoms of retinopathy by using spectral domain ocular coherence tomography (SD-OCT). Patients and methods: The retinal layers of a total of 402 eyes including 114 patients treated with hydroxychloroquine (for rheumatoid arthritis (n=40), Sjögren s syndrome (n=47) and connective tissue diseases (n=27) and age-matched 87 healthy controls were evaluated with SD-OCT. The macular cube protocol, optic disc cube protocol and horizontal and vertical HD 5-line raster scan protocol were applied. The measured parameters were compared between hydroxychloroquine users and healthy control group. The results of these parameters were also compared with other disease groups using hydroxychloroquine. The correlation of these parameters with the duration of drug consumption and dose was assessed. Results: All layers of outer fovea, superior and inferior quadrants of retinal nerve fiber layers of hydroxychloroquine users were thinner than non- users. Connective tissue disease group had longer duration and higher cumulative dose of hydroxychloroquine than other diagnostic groups. This group had thinner mean retinal nerve fiber layers values than the other groups as well. There were significant and negative correlations between cumulative dose of drug and parafoveal region thickness of outer fovea and inferior quadrant of retinal nerve fiber layers. Thickness of parafoveal and perifoveal layers was negatively correlated with the dose of drug per kg of body weight. Conclusion: Our study results show that SD-OCT may be the golden standard technique for the follow-up of antimalarial-induced retinotoxicity in future.
Fen > Tıp > Romatoloji
DergiAraştırma MakalesiErişime Açık
  • 1. Yam JC, Kwok AK. Ocular toxicity of hydroxychloroquine. Hong Kong Med J 2006 12:294-304.
  • 2. Korah S, Kuriakose T. Optical coherence tomography in a patient with chloroquine-induced maculopathy. Indian J Ophthalmol 2008;56:511-3.
  • 3. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734-46.
  • 4. Pasadhika S, Fishman GA. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond) 2010;24:340-6.
  • 5. Marmor MF, Carr RE, Easterbrook M, Farjo AA, Mieler WF; American Academy of Ophthalmology. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy: a report by the American Academy of Ophthalmology. Ophthalmology 2002;109:1377-82.
  • 6. Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, et al. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology 2007;114:763-73.
  • 7. Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, et al. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci 2010;51:465-73.
  • 8. Stepien KE, Han DP, Schell J, Godara P, Rha J, Carroll J. Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. Trans Am Ophthalmol Soc 2009;107:28-33.
  • 9. Weiner A, Sandberg MA, Gaudio AR, Kini MM, Berson EL. Hydroxychloroquine retinopathy. Am J Ophthalmol 1991;112:528-34.
  • 10. Rosenthal AR, Kolb H, Bergsma D, Huxsoll D, Hopkins JL. Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci 1978;17:1158-75.
  • 11. Mahon GJ, Anderson HR, Gardiner TA, McFarlane S, Archer DB, Stitt AW. Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy. Curr Eye Res 2004;28:277-84.
  • 12. Tehrani R, Ostrowski RA, Hariman R, Jay WM. Ocular toxicity of hydroxychloroquine. Semin Ophthalmol 2008;23:201-9.
  • 13. Rodriguez-Padilla JA, Hedges TR 3rd, Monson B, Srinivasan V, Wojtkowski M, Reichel E, et al. High-speed ultra-high-resolution optical coherence tomography findings in hydroxychloroquine retinopathy. Arch Ophthalmol 2007;125:775-80.
  • 14. Kellner S, Weinitz S, Kellner U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol 2009;93:1444-7.
  • 15. Wetterholm DH, Winter FC. Histopathology of chloroquine retinal toxicity. Arch Ophtalmol 1964;71:2-7.
  • 16. Bernstein HN, Ginsberg J. The pathology of chloroquine retinopathy. Arch Ophthalmol 1964;71:238-45.
  • 17. Kahn JB, Haberman ID, Reddy S. Spectral-domain optical coherence tomography as a screening technique for chloroquine and hydroxychloroquine retinal toxicity. Ophthalmic Surg Lasers Imaging 2011;42:493-7.
  • 18. Hood DC, Seiple W, Holopigian K, Greenstein V. A comparison of the components of the multifocal and full-field ERGs. Vis Neurosci 1997;14:533-44.
  • 19. Asayama K. [In vivo study on the absorption of the subretianl fluid. 2. Studies on an absorption of tracers (I125.human serum albumin and lanthanum nitrate) injected between the sensory retina and the pigment epithelium layer (author's transl)]. Nihon Ganka Gakkai Zasshi 1976;80:598-607. [Article in Japanese]
  • 20. Bunt-Milam AH, Saari JC, Klock IB, Garwin GG. Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci 1985;26:1377-80.
  • 21. Bonanomi MT, Dantas NC, Medeiros FA. Retinal nerve fibre layer thickness measurements in patients using chloroquine. Clin Experiment Ophthalmol 2006;34:130-6.
  • 22. Semmer AE, Lee MS, Harrison AR, Olsen TW. Hydroxychloroquine retinopathy screening. Br J Ophthalmol 2008;92:1653-5.
  • 23. Warner AE. Early hydroxychloroquine macular toxicity. Arthritis Rheum 2001;44:1959-61.
  • 24. Bienfang D, Coblyn JS, Liang MH, Corzillius M. Hydroxychloroquine retinopathy despite regular ophthalmologic evaluation: a consecutive series. J Rheumatol 2000;27:2703-6.
  • 25. Rüther K, Foerster J, Berndt S, Schroeter J. Chloroquine/ hydroxychloroquine: variability of retinotoxic cumulative doses. Ophthalmologe 2007;104:875-9.
  • 26. Missner S, Kellner U. Comparison of different screening methods for chloroquine/hydroxychloroquine retinopathy: multifocal electroretinography, color vision, perimetry, ophthalmoscopy, and fluorescein angiography. Graefes Arch Clin Exp Ophthalmol 2012;250:319-25.
  • 27. Marmor MF. Comparison of screening procedures in hydroxychloroquine toxicity. Arch Ophthalmol 2012;130:461-9.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.