Yıl: 2013 Cilt: 38 Sayı: 5 Sayfa Aralığı: 307 - 314 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ

Öz:
Gıdalarda doğal olarak bulunan proteinlerden sindirim sırasında enzimatik hidrolizle veya fermantasyon yoluyla fizyolojik olarak pek çok faydası bulunan biyoaktif peptitler oluşur. Bu peptitlerin biyolojik aktivitesi antimikrobiyel etki, kan basıncını düşürücü etki (Angiotensin-I Converting Enzyme (ACE) inhibitörü), kolesterol düşürme, antitrombotik ve antioksidan etki, mineral absorbsiyonu/biyoyararlılığını artırma, immunomodülatör ve opioid etkiler olarak sıralanabilir. Birçok gıda tüketime sunulmadan önce çeşitli proseslerden geçer. Gıda teknolojisinde yaygın olarak kullanılan ısıl işlem ve fermantasyon gibi prosesler protein yapısını dolayısıyla biyoaktif peptit aktivitesini etkilemektedir. Bu derlemede gıda işleme proseslerinin biyoaktif peptit oluşumu ve aktivitesi üzerine etkilerinin ele alındığı çalışmalar incelenmiş ve ısıl işlem ve fermantasyonun biyoaktif peptitler üzerindeki etkisi araştırılmıştır.
Anahtar Kelime:

Konular: Biyokimya ve Moleküler Biyoloji Gıda Bilimi ve Teknolojisi

EFFECTS OF HEAT TREATMENT AND FERMENTATION ON THE FORMATION AND ACTIVITY OF BIOACTIVE PEPTIDES IN FOODS

Öz:
Bioactive peptides, which are physiologically useful, result from proteins which exist in foods naturally by enzymatic hydrolysis during digestion or fermentation. Biological activities of these peptides can be listed as antimicrobial activity, antihypertensive activity (Angiotensin-I Converting Enzyme (ACE) inhibitors), cholesterol lowering effect, antitrombotic and antioxidant effect, mineral absorption/ bioavailability increasing activity, immunomodulatory and opioid activity. Many foods are processed before consumed. Processes such as thermal treatment and fermentation which are commonly used in food technology have an effect on protein structure and thereby bioactive peptides activity. In this review, studies about formation of bioactive peptides and their activities have been investigated and effects of thermal treatment and fermentation on bioactive peptides have been researched.
Anahtar Kelime:

Konular: Biyokimya ve Moleküler Biyoloji Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Korhonen H, Pihlanto A. 2006. Bioactive peptides: production and functionality. Int Dairy J, 16: 945-960.
  • 2. Hartmann R, Meisel H. 2007. Food derived pepties with biological activity: from research to food applications. Curr Opin Biotechnol, 18: 163-169.
  • 3. Meisel H. 2004. Multifunctional peptides encrypted in milk proteins. Biofactors 21: 55-61.
  • 4. Anantharaman K, Finot P A. 1993. Nutritional aspects of food proteins in relation to technology. Food Rev Int, 9: 629-655.
  • 5. Finot, P A. 1997. Effects of processing and storage on the nutritional value of food proteins. In: Food Proteins and Their Applications, Danodaran S (Ed), Marcel Dekker Inc, New York, USA, pp. 551-578.
  • 6. Boye J I, Ma C Y, Harwalkar V R. 1997. Thermal denaturation and coagulation of proteins. In: Food Proteins and Their Applications, Danodaran S (Ed), Marcel Dekker Inc, New York, USA, pp. 25-56.
  • 7. Anema S G. 2009, The whey proteins in milk: Thermal denaturation, physical interactions and effects on the functional properties of milk. In: Milk Proteins: From Expression to Food, Thompson A (Ed), Elsevier Inc, USA, pp. 239-281.
  • 8. Jang H D, Swaisgood H E. 1990. Disulfide bond formation between thermally denatured b-lactoblobulin and k-casein in casein micelles. J Dairy Sci, 73:900–904.
  • 9. Raikos V. 2010. Effect of heat treatment on milk protein functionality at emulsion interfaces. A review, Food Hydrocoll, 24:259-265.
  • 10. Lopez-Fandino R, Otte J, van Camp J. 2006. Physiological, chemical and technological aspects of milk protein derived peptides with antihypertensive and ACE inhibitory activity. Int Dairy J, 16:1277-1293.
  • 11. Broersen K, Voragen A G J, Hamer R J, de Jongh H H J. 2004. Glycoforms of beta lactoglobulin with improved thermostability and preserved structural packaging. Biotechnol Bioeng, 86:78-87.
  • 12. Rickert K W, Imperiali B. 1995. Analysis of the conserved glycosylation site in the nicotinic acetylcholine recceptor potential roles in complex assembly. Chem Biol (Lond), 2: 751-775.
  • 13. Leeb E, Kulozik U, Cheison S. 2011. Thermal pre-treatment of β-Lactoglobulin as a tool to steer enzymatic hydrolysis and control the release of peptides. Procedia – Food Science, 1:1540-1546.
  • 14. Phelan M, Kerins D. 2011. The potential role of milk-derived peptides in cardiovascular disease. Food & Function, 2: 153-167
  • 15. Korhonen H, Pihlanto-Leppala A, Ranramaki P, Tupasela T. 1998. Impact of processing on bioactive proteins and peptides. Trends in Food Science and Technology, 9: 307-319.
  • 16. Da Costa E L, da Rocha Gontijo J A, Netto F M. 2007. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. Int Dairy J, 17: 632-640.
  • 17. Hirose M. 1993. Molten globule state of food proteins. Trends in Food Science and Technolgy, 4: 48-51.
  • 18. La Fuente M A, Hemar Y, Tamehana M, Munro P A, Singh H. 2002. Process-induced changes in whey proteins during the manufacture of whey protein concentrates. Int Dairy J, 12: 361-369.
  • 19. Muguruma M, Ahhmed A M, Katayama K, Kawahara S, Maruyama M, Nakamura T. 2009. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chem, 114: 516-522.
  • 20. Rui X, Boye J I, Simpson B K, Prasher S O. 2012. Angiotensin I converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates: Effect of different thermal and enzymatic digestion treatments. Food Res Int, 49: 739-746.
  • 21. Akıllıoğlu H G. 2009. Bazı Kurubaklagillerden Elde Edilen Protein Ekstraktları ve Fraksiyonlarının ADE İnhibisyon Aktiviteleri: Isıl İşlem ve In Vitro Sindirilirliğin Etkisi. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İzmir, Türkiye, 104 s.
  • 22. Kitts D D, Weiler K. 2003. Bioactive proteins and peptides from food sources: applications of bioprocesses used in isolation and recovery. Curr Pharm Des, 9: 1309-1323.
  • 23. Nakahara T, Yamaguchi H, Uchida R. 2012. Effect of temperature on the stability of various peptidases during peptide-enriched soy sauce fermentation. J Biosci Bioeng, 113 (3): 355–359.
  • 24. Randhir R, Kwon Y, Shetty K. 2008. Effect of thermal processing on phenolics, antioxidant activity and healt-relevant functionality of select grain sprouts and seedlings. Innovative Food Science and Emerging Technologies, 9: 355-364.
  • 25. Siow H, Gan C. 2013. Extraction of Antioxidative and Antihypertensive Bioactive Peptides from Parkia speciosa Seeds. Food Chem, doi: http://dx.doi.org/10.1016/j.foodchem.2013. 06.030
  • 26. Zhao C J, Hu Y, Schieber A, Gänzle M. 2013. Fate of ACE-inhibitory peptides during the bread-making process: Quantification of peptides in sourdough, bread crumb, steamed bread and soda crackers. J Cereal Sci, 57:514-519.
  • 27. Majumder K, Wu J. 2009. Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. J Agric Food Chem, 57: 471-477.
  • 28. Miguel M, Recio I, Gomez-Ruiz, J A, Ramos M, Lopez-Fandino R. 2004. Angiotensin I converting enzyme activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot, 67: 1914-1920.
  • 29. Prasad C, Hilton C W, Lohr J B, Robertson H J R. 1991. Increased cerebrospinal şuid cyclo (His-Pro) content in schizophrenia. Neuropeptides, 20: 187-190.
  • 30. Minelli A, Bellezza I, Grottelli S, Galli F. 2008. Focus on cyclo (His-Pro): History and perspectives as antioxidant peptide. Amino Acids, 35: 283-289.
  • 31. Samaranayaka A G P, Li-Chan E C Y. 2011. Foodderived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3: 229-254.
  • 32. Inouye K, Nakano K, Asaoka K, Yasukawa K. 2009. Effects of thermal treatment on the coagulation of soy proteins induced by subtilisin Carlsberg. J Agric Food Chem, 57: 717–723.
  • 33. Yamamoto N, Akino A, Takano T. 1994. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci, 77: 917-922.
  • 34. Yamamoto N, Maeno M, Takano T. 1999. Purification and characterization of an antihypertensive peptide from a yoghurt-like product fermented by Lactobacillus helveticus CPN4. J Dairy Sci, 82: 1388-1393.
  • 35. Gonzalez-Gonzalez C R, Tuohy K M, Jauregi P. 2011. Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: Effects of calcium, pH and peptides on the ACE-inhibitory activity. Int Dairy J, 21: 615-622.
  • 36. Quiros A, Ramos M, Muguerza B, Delgado M A, Miguel M, Aleixandre A, Recio I. 2007. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int Dairy J, 17: 33-41.
  • 37. Korhonen H, Pihlanto-Leppala A. 2003. Food-derived bioactive peptides: opportunities for designing future foods. Curr Pharm Des, 9: 297-1308.
  • 38. Matar C, LeBlanc J G, Martin L, Perdigon G. 2003. Biologically active peptides released in fermented milk: role and functions. In: Handbook of Fermented Functional Foods. Farnworth E R (Ed), CRC Press, USA, pp.177-201.
  • 39. Sharma S, Singh R, Rana S. 2011. Bioactive Peptides: A Review. International Journal of Bioautomation, 15: 223-250.
  • 40. Tsai J S, Chen T J, Pan B S , Gong S D, Chung M Y. 2008. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chem, 106: 552–558.
  • 41. Yerlikaya O, Kınık Ö, Akbulut N. 2010. Peyniraltı suyunun fonksiyonel özellikleri ve peyniraltı suyu kullanılarak üretilen yeni nesil süt ürünleri. GIDA, 35 (4): 289-296.
  • 42. Didelot S, Bordenave-Juchereau S, Rosenfeld E, Fruitier-Arnaudin I, Piot J M, Sannier F. 2006. Preparation of angiotensin-I-converting enzyme inhibitory hydrolysates from unsupplemented caprine whey fermentation by various cheese microşora. Int Dairy J, 16: 976-983.
  • 43. Saito T, Nakamura T, Kitazawa H, Kawai Y, Itoh, T. 2000. Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. J Dairy Sci, 83: 1434-1440.
  • 44. Meisel H. 1997. Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications. Livest Prod Sci, 50: 125-138.
  • 45. Gobbetti M, Minervini F, Rizzello C G. 2004. Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. Int J Dairy Technol, 57: 173-188.
  • 46. Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T. 1995. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci, 78: 777-783.
  • 47. Nielsen M S, Martinussen T, şambard B, Sørensen K I, Otte J. 2009. Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int Dairy J, 19: 155-165.
  • 48. Kato T, Matsuda T, Tahara T, Sugimoto M, Sato Y, Nakamura R. 1994. Effects of meat conditioning and lactic fermentation on pork muscle protein degradation. Biosci Biotechnol Biochem, 58: 408-410. 49. Dainty R, Blom H. 1995. şavor chemistry of fermented sausages. In: Fermented Meats, Campbell-Platt G, Cook PE (Eds), Blackie Academic Press, UK, pp. 176-193.
  • 50. Arihara S, Umeyama A, Bando S, Kobuke S, Imoto S, Ono M. 2004. Termiticidal constituents of the black-heartwood of Cryptomeria japonica. Mokuzai Gakkaishi, 50: 413-421.
  • 51. Vastag Z, Popovic´ L, Popovic´ S, Petrovic´ L, Pericin D. 2010. Antioxidant and angiotensin-I converting enzyme inhibitory activity in the water-soluble protein extract from petrovac sausage (petrovská kolbása). Food Control, 21: 1298-1302.
  • 52. Akkoç N, fianlıbaba P, Akçelik M. 2009. Bakteriyosinler: Alternatif gıda koruyucuları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25: 59-70.
  • 53. Zhang W, Xiao S, Samaraweera H, Lee E J, Ahn D U. 2010. Improving functional value of meat products. Meat Sci, 86: 15-31.
  • 54. Torino M I, Limón R I, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal-Valverde C, Frias J. 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem, 136: 1030-1037.
  • 55. Rho S J, Lee J S, Chung Y I, Kim Y W, Lee H G. 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem, 44: 490-493.
  • 56. Gibbs B F, Zougman A, Masse R, Mulligan C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int, 37: 123-131.
  • 57. Wang H, Li Y, Cheng Y, Yin L, Li L. 2013. Effect of the Maillard reaction on angiotensin Iconverting enzyme (ACE)-inhibitory activity of douchi during fermentation. Food Bioprocess Technol, 6: 297-301.
  • 58. Inoue K, Gotou T, Kitajima H, Mizuno S, Nakazawa T, Yamamoto N. 2009. Release of antihypertensive peptides in miso paste during its fermentation, by the addition of casein. J Biosci Bioeng, 108:111-115.
  • 59. Kancabaş A, Karakaya S. 2013. Angiotensinconverting enzyme (ACE) inhibitory activity of boza, a traditional fermented beverage. J Sci Food Agric, 93: 641-645.
  • 60. Gänzle, M G., Vermeulen N, Vogel R F. 2007. Carbohydrate peptide, and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol, 24:128-138.
APA OTAĞ F, HAYTA M (2013). GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. , 307 - 314.
Chicago OTAĞ FADİME BEGÜM,HAYTA Mehmet GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. (2013): 307 - 314.
MLA OTAĞ FADİME BEGÜM,HAYTA Mehmet GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. , 2013, ss.307 - 314.
AMA OTAĞ F,HAYTA M GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. . 2013; 307 - 314.
Vancouver OTAĞ F,HAYTA M GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. . 2013; 307 - 314.
IEEE OTAĞ F,HAYTA M "GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ." , ss.307 - 314, 2013.
ISNAD OTAĞ, FADİME BEGÜM - HAYTA, Mehmet. "GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ". (2013), 307-314.
APA OTAĞ F, HAYTA M (2013). GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. GIDA, 38(5), 307 - 314.
Chicago OTAĞ FADİME BEGÜM,HAYTA Mehmet GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. GIDA 38, no.5 (2013): 307 - 314.
MLA OTAĞ FADİME BEGÜM,HAYTA Mehmet GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. GIDA, vol.38, no.5, 2013, ss.307 - 314.
AMA OTAĞ F,HAYTA M GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. GIDA. 2013; 38(5): 307 - 314.
Vancouver OTAĞ F,HAYTA M GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ. GIDA. 2013; 38(5): 307 - 314.
IEEE OTAĞ F,HAYTA M "GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ." GIDA, 38, ss.307 - 314, 2013.
ISNAD OTAĞ, FADİME BEGÜM - HAYTA, Mehmet. "GIDALARDA BİYOAKTİF PEPTİT OLUŞUMU VE AKTİVİTESİ ÜZERİNE ISIL İŞLEM VE FERMANTASYONUN ETKİLERİ". GIDA 38/5 (2013), 307-314.