Yıl: 2016 Cilt: 31 Sayı: 1 Sayfa Aralığı: 14 - 33 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

A Model Proposal on ICT Integration for Effective Mathematics Instruction

Öz:
Bu çalışmanın amacı etkili matematik öğretimi için BİT entegrasyonunun nasıl gerçekleştirilebileceğine ilişkin bir model önerisi ortaya koymaktır. Araştırma, etkili matematik öğretimi, BİT entegrasyonu ve 5E öğrenme döngüsü olmak üzere üç temel üzerine kurulmuştur. 12 hafta devam eden uygulama sürecinde bu üç öge temel alınarak bir öğrenme ortamı oluşturulmuştur. Tasarım tabanlı araştırma modeline uygun olarak yürütülen çalışmada katılımcılar, Bilgisayar Destekli Matematik Öğretimi dersini almakta olan 47 ilköğretim matematik öğretmen adayından oluşmuştur. Verilerin toplanmasında araştırmacılar tarafından geliştirilen kontrol listeleri, video kayıtları, öğrencilerin hazırladıkları ders planları, yansımalar ve anket kullanılmıştır. Tasarım Tabanlı araştırma modelinin doğası gereği, Tasarımların sürekli olarak iyileştirilebilmesi için 12 hafta boyunca veriler toplanmış ve her hafta toplanan veriler hemen, sürekli ve geriye dönük olarak frekans, yüzde ve içerik analizi yoluyla çözümlenmiştir. Verilerin analizi sonucunda, etkili matematik öğretimi, BİT entegrasyonu ve 5E öğrenme döngüsü olmak üzere üç temel üzerine kurulan öğrenme ortamının öğretmen adaylarının etkili matematik öğretimi için BİT entegrasyonunu sağlamaya yönelik ders planı hazırlama süreçlerine olumlu katkı sağladığı belirlenmiştir. Hazırlanan ders planlarında BİT entegrasyonunun gerçekleşme süreci incelendiğinde tüm haftalara ait 101 ders planından %95'inin BİTE açısından başarılı olduğu söylenebilir. Buradan yola çıkılarak etkili öğretim süreçleri gerçekleştirilebilmesi için BİT entegrasyonunun nasıl sağlanabileceğine ilişkin "Planlama-Uygulama-Değerlendirme" modeli ortaya konulmuştur.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları

Etkili Matematik Öğretimi için BİT Entegrasyonu Model Önerisi

Öz:
The aim of this study is to present a model for an effective mathematics instruction with respect to how ICT integration is put into practice. The research was established on three bases as effective mathematics instruction, ICT integration and 5E learning cycle. A learning environment was created by grounding on these three elements. In this study, which was carried out in accordance with design-based research model, the participants were 47 preservice mathematics teachers. As data-collection tools, video-recordings, check-lists, and lesson plans were used. By the nature of design-based research model, data was collected during 12 weeks to enable the designs to be improved constantly, and it was analyzed instantly, consistently, retrospectively by means of frequency, percent and content analysis. As a result of the data analysis, it was revealed that the learning environment made a positive contribution to the process of preparing lesson plans aimed at providing ICT integration for effective mathematics instruction. When the realization process of ICT integration in prepared lesson plans has been investigated that 95 percent of 101 lesson plans of all weeks have been successful in terms of ICT integration. As a result, a model involving "PlanningImplementation-Evaluation" for implementing ICT integration was proposed.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akkoyunlu, B., (1991) Modelling CAL in the Turkish educational system. Doctoral Dissertation, Leicester University, England.
  • Anderson, T. & Shattuck, J. (2012). Design-based research: A decade of progress in education research. Educational Researcher, 41, 16-25.
  • Baki, A. (2000). Preparing student teachers to use computers in mathematics classrooms through a long-term pre- service course in Turkey. Journal of Information Technology for Teacher Education, 9(3).
  • Barab, S. & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1-14.
  • Brown, A., (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-178.
  • Brush, T., Glazewski, K., Rutowski, K., Berg, K., Stromfors, C., Van-Nest, M., et al., (2003). Integrating technology in a field-based teacher training program: The PT3@ASU Project. Educational Technology Research and Development, 51(2), 57-72.
  • Bybee, R. W. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth. UK: Heinemann
  • Campbell, M.A. (2000). The effects of the 5E learning cycle model on students' understanding of force and motion concepts. Unpublished master's dissertation, University of Central Florida, Orlando, USA.
  • Cobb, P. (2001). Supporting the improvement of learning and teaching in social and institutional context. In Carver, S. & Klahr, D. (Eds.) Cognition and instruction: Twenty-five years of progress (pp. 455-478). Cambridge, MA: Lawrence Erlbaum Associates.
  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R. & Schauble, l., (2003). Design experiments in educational research. Educational Psychologist, 32(1), 9-13.
  • Cobb, P. & Steffe, L. P., (1983). The constructivist researcher as teacher and model builder, Journal for Research in Mathematics Education. 14(2), 83-94.
  • Confrey, J., Bell, K. & Carrejo, D. (2001). Systemic crossfire: What implementation research reveals about urban reform in mathematics. Austin: University of Texas.
  • Design-Based Research Collective, (2003) Design-based research: An emerging paradigm for educational inquiry. Educational http://www.designbasedresearch.org/reppubs/DBRC2003.pdf 32(1), 5-8. Retrieved August 10, 2012, from
  • Duru, A., Peker, M. & Birgin, O. (2012). Investigation of pre-service teachers` attitudes toward using the computer in teaching and learning mathematics. The New Educational Review, 27(1), 283-291.
  • Gay, G., & Hembrooke, H., (2004). Activity-centered design: An ecological approach to designing smart tools and usable systems. Cambridge, MA: MIT Press.
  • Garnett, K. (1992). Developing fluency with basic number facts: Intervention for students with learning disabilities. Learning Disabilities Research & Practice, 7, 210-216.
  • Glazer, E., Hannafin, M. J. & Song, L. (2005). Promoting technology integration through collaborative apprenticeships. Educational Technology Research and Development, 53(4), 57-67.
  • Güler, Ç. (2010). Öğrenme nesnesi tasarım ve geliştirme süreci: bir tasarım tabanlı araştırma örneği. Doctoral Dissertation, Hacettepe University, Graduate School of Science and Engineering, Ankara.
  • Gwet, K. (2008). Computing inter-rater reliability and its variance in the presence of high agreement. British Journal of Mathematical and Statistical Psychology, 61, 29-48.
  • Haslaman, T., Kuskaya, F. ve Kocak, Y. (2008). Integration of ICT into the teaching-learning process: Toward a unified model. In J. Luca, E. Weippl (Ed.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications (pp. 2384-2389). Chesapeake, VA: AACE.
  • Haslaman, T. (2011). Çevrimiçi öğrenme ortamının öğretmen ve öğrencilerin özdüzenleyici öğrenme becerileri üzerindeki etkisi. Doctoral Dissertation, Hacettepe University, Graduate School of Science and Engineering, Ankara.
  • Hsu, S. (2010). The relationship between teacher's technology integration ability and usage. Journal of Educational Computing Research, 43(3), 309 - 325.
  • Huang, R., Li, Y., & He, X. (2010). What constitutes effective mathematics instruction: a comparison of chinese expert and novice teachers views. Canadian Journal of Science, Mathematics and Technology Education, 10(4), 293-306.
  • Işıksal, M. ve Aşkar, P. (2005). The effect of spreadsheet and dynamic geometry software on the achievement and self-efficacy of 7th-grade students. Educational Research, 47(3), 333-350.
  • ISTE (2000). National Educational Technology Standards (NETS) and performance indicators. International Society for Technology in Education. Retrieved June 13, 2012, from http://cnets.iste.org/
  • Jonassen, D., Cernusca, D. & Ionas, G. (2007). Constructivism and instructional design: The emergence of the learning sciences and design research. Trends and issues in instructional design and technology, 2, 45-52.
  • Kaya, G. ve Usluel Y. K. (2011). Öğrenme öğretme süreçlerinde BİT entegrasyonunu etkileyen faktörlere yönelik içerik analizi. Buca Eğitim Fakültesi Dergisi, 31, 48-67.
  • Kılıç, H. (2010). The nature of preservice mathematics teachers' knowledge of students. Procedia Social and Behavioral Sciences, 9, 1096-1100.
  • Landis, J. R. & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
  • Lehrer, R., & Schauble, L., (2000). The development of model-based reasoning. Journal of Applied Developmental Psychology, 21(1), 39-48.
  • Lin, C.Y. (2008). Preservice teachers' beliefs about using technology in the mathematics classroom. Journal of Computers in Mathematics and Science Teaching, 27(3), 341-360.
  • Lim, C. P. & Ching, C. S. (2004). An activity-theoretical approach to research of ICT integration in Singapore schools: orienting activities and learner autonomy. Computers and Education, 43, 215-236.
  • Lim, C. P., Teo, Y. H., Wong, P., Khine, M. S., Chai, C. S. & Divaharan, S. (2003). Creating a conductive learning environment for the effective integration of ICT: Classroom management issues. Journal of Interactive Learning Research, 14(4), 405-423.
  • MEB, (2006). Öğretmenlik mesleği genel yeterlikleri. Ankara: MEB, Öğretmen yetiştirme ve eğitimi genel müdürlüğü.
  • MEB, (2008). Öğretmenlik mesleği genel ve özel alan yeterlikleri, Ankara: MEB, Öğretmen yetiştirme ve eğitimi genel müdürlüğü.
  • McKenney, S. & Reeves, T. C. (2012). Conducting educational design research. New York: Routledge.
  • Mishra, P. & Koehler, M. J. (2006). Technological pedagogical content knowledge: A new framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.
  • Mueller, J., Wood, E., Willoughby, T., Ross, C. & Specht, J. (2008). Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration. Computers & Education, 51(4), 1523-1537.
  • Mumcu, F. (2011). Effectiveness of ICT integration instruction provided to student teachers in a networked learning environment. Unpublished doctoral dissertation, Hacettepe University, Ankara, Turkey.
  • Mumcu, F., Haslaman, T. ve Usluel, Y. K. (2008). Teknolojik pedagojik içerik bilgisi modeli çerçevesinde etkili teknoloji entegrasyonunun göstergeleri. 10th International Educational Technology Conference (IETC), İstanbul, Turkey.
  • Muschla, J. A., Muschla, G. R., & Muschla, E. (2010). Math teacher's survival guide: providing effective math instruction. Grades 5-12. San Francisco, CA: Jossey-Bass.
  • NCTM, (2000). Principles and standards for school mathematics. Reston, Va.: NCTM.
  • NCES, (2002). Technology in schools: suggestions, tools, and guidelines for assessing technology in elementary and secondary education. Washington DC: U.S. Department of Education. Retrieved May 12, 2009, from http://nces.ed.gov/pubs2003/2003313.pdf
  • Ontario Ministry of Education (2006). Principles underlying effective mathematics instruction in a guide to effective instruction in mathematics, kindergarten to grade 6, volume one. Ontario: Ministry of Education.
  • Roblyer, M. D. (2006). Integrating educational technology into teaching (5th. ed.). Upper Saddle River, NJ: Pearson Merrill Prentice Hall.
  • Simon, M. A., (2000). Research on the development of mathematics teachers: The teacher development experiment, In A. Kelly & R. Lesh (Ed.), Handbook of research design in mathematics and science education (pp. 339-343). Mahwah,NJ: Lawrence Erlbaum Associates.
  • Smerdan, B. A. & Burkam, D. T. (1999). Access to constructivist and didactic teaching: Who gets it? Where is it practiced? Teachers College Record, 77(4), 575.
  • Smith, K., S. & Geller, C. (2004). Essential principles of effective mathematics instruction: Methods to reach all students, preventing school failure. Alternative Education for Children and Youth, 48(4), 22-29.
  • Steedly, K., Dragoo, K., Arafeh, S. & Luke, S. D. (2008). Effective mathematics instruction. Evidence For Education, 2(1).
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. E. Kelly (Ed.), Research design in mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum.
  • Stein, M. K., Silver, E. A., & Smith, M. S., (1998). Mathematics reform and teacher development: A community of practice perspective. In J. G. Greeno & S. V. Goldman (Ed.), Thinking practices in mathematics and science learning (pp. 17-52). Mahwah, NJ: Lawrence Erlbaum.
  • Toledo, C. (2005). A five-stage model of computer technology integration into teacher education curriculum. Contemporary Issues in Technology and Teacher Education, 5(2), 177-191.
  • Tondeur, J., Hermans, R., Van Braak, J. & Valcke, M. (2008). Exploring the link between teachers' educational belief profiles and different types of computer use in the classroom. Computers in Human Behavior, 24, 2541-2553.
  • Trafton, P. R. (1984). Toward More Effective, Efficient Instruction in Mathematics. The Elementary School Journal, 84(5), 514-528.
  • Trowbridge, L.W., Bybee, R.W. & Powell. J.C. (2004). Teaching secondary school science (8th ed.). Upper Saddle River, NJ: Pearson Prentice Hall,
  • Usluel, Y. K. ve Yıldız, B. (2012). Bilgi ve iletişim teknolojilerinin öğrenme öğretme sürecine entegrasyonu: Süreçle ilgili kontrol listesinin geliştirilmesi, X. Ulusal Fen ve Matematik Eğitimi Kongresi, Niğde, Türkiye.
  • Van den Akker, J., Gravemeiger, K., McKenney, S. & Nieveen, N. (2006). Introducing educational design research. In Van den Akker, J., Gravemeiger, K., McKenney, S. & Nieveen, N. (Ed.), Educational design research (1-8). London:Routledge.
  • Vanderlinde, R. & van Braak, J. (2010). The e-capacity of primary schools: Development of a conceptual model and scale construction from a school improvement perspective. Computers & Education 55(2), 541-553.
  • Wang, F. & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5.
  • Wang, Q. & Woo, H. L. (2007). Systematic planning for ICT integration in topic learning. Educational Technology & Society, 10(1), 148-156.
  • Wang, Q. Y. (2008). A generic model for guiding the integration of ICT into teaching and learning. Innovations in Education and Teaching International, 45(3), 411-419.
  • Yıldırım, A. ve Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınları.
  • Yıldız, B. (2013). A model proposal on ICT integration for effective mathematics instruction. Unpublished doctoral dissertation, Hacettepe University, Graduate School of Science and Engineering, Ankara.
  • Yurdakul, I. K. (2011). Öğretmen adaylarının teknopedogojik eğitim yeterlikerinin bilgi ve iletişim teknolojilerini kullanmaları açısından incelenmesi. Hacettepe Üniversitesi eğitim Fakültesi Dergisi, 40, 397-408.
APA YILDIZ B, KOÇAK USLUEL Y (2016). A Model Proposal on ICT Integration for Effective Mathematics Instruction. , 14 - 33.
Chicago YILDIZ BAHADIR,KOÇAK USLUEL Yasemin A Model Proposal on ICT Integration for Effective Mathematics Instruction. (2016): 14 - 33.
MLA YILDIZ BAHADIR,KOÇAK USLUEL Yasemin A Model Proposal on ICT Integration for Effective Mathematics Instruction. , 2016, ss.14 - 33.
AMA YILDIZ B,KOÇAK USLUEL Y A Model Proposal on ICT Integration for Effective Mathematics Instruction. . 2016; 14 - 33.
Vancouver YILDIZ B,KOÇAK USLUEL Y A Model Proposal on ICT Integration for Effective Mathematics Instruction. . 2016; 14 - 33.
IEEE YILDIZ B,KOÇAK USLUEL Y "A Model Proposal on ICT Integration for Effective Mathematics Instruction." , ss.14 - 33, 2016.
ISNAD YILDIZ, BAHADIR - KOÇAK USLUEL, Yasemin. "A Model Proposal on ICT Integration for Effective Mathematics Instruction". (2016), 14-33.
APA YILDIZ B, KOÇAK USLUEL Y (2016). A Model Proposal on ICT Integration for Effective Mathematics Instruction. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 31(1), 14 - 33.
Chicago YILDIZ BAHADIR,KOÇAK USLUEL Yasemin A Model Proposal on ICT Integration for Effective Mathematics Instruction. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 31, no.1 (2016): 14 - 33.
MLA YILDIZ BAHADIR,KOÇAK USLUEL Yasemin A Model Proposal on ICT Integration for Effective Mathematics Instruction. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, vol.31, no.1, 2016, ss.14 - 33.
AMA YILDIZ B,KOÇAK USLUEL Y A Model Proposal on ICT Integration for Effective Mathematics Instruction. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. 2016; 31(1): 14 - 33.
Vancouver YILDIZ B,KOÇAK USLUEL Y A Model Proposal on ICT Integration for Effective Mathematics Instruction. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. 2016; 31(1): 14 - 33.
IEEE YILDIZ B,KOÇAK USLUEL Y "A Model Proposal on ICT Integration for Effective Mathematics Instruction." Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 31, ss.14 - 33, 2016.
ISNAD YILDIZ, BAHADIR - KOÇAK USLUEL, Yasemin. "A Model Proposal on ICT Integration for Effective Mathematics Instruction". Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 31/1 (2016), 14-33.