Yıl: 2016 Cilt: 16 Sayı: 12 Sayfa Aralığı: 916 - 922 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart

Öz:
Objective: Cardiac uptake of fructose is thought to be mediated by glucose transporter 5 (GLUT5), whereas the uptake of glycerol is facilitated by aquaporin 7 (AQP7). We aimed to investigate the effect of a high-fructose diet (HFD) on GLUT5 and AQP7 levels in the rat heart subjected to exercise.Methods: Male Sprague–Dawley rats were allocated to control (C; n=11), exercise (E; n=10), HFD (n=12), and HFD plus exercise (HFD-E; n=12) groups. HFD was started 28 days before euthanasia. From day 24 to 27, rats were subjected to moderate exercise, followed by vigorous exercise on day 28 (groups E and HFD-E). Cardiac GLUT5 and AQP7 mRNA levels were determined using RT-PCR. The protein contents of GLUT5 and AQP7 were immunohistochemically assessed. Paired-t, ANOVA with Bonferroni, Kruskal–Wallis, and Bonferroni-corrected Mann–Whitney U tests were used for statistical analysis.Results: GLUT5 mRNA expression and protein content did not differ between the groups. AQP7 mRNA levels significantly increased (4.8-fold) in group E compared with in group C (p<0.001). Compared with group C, no significant change was observed in AQP7 mRNA levels in groups HFD and HFD-E. The AQP7 staining score in group E was significantly higher than that in groups C (p<0.001), E (p<0.001), and HFD-E (p<0.001).Conclusion: Our study indicates that exercise enhances cardiac AQP7 mRNA expression and protein content. However, HFD prevents the exercise-induced increase in cardiac AQP7 expression. This inhibitory effect may be related to the competition between fructose and glycerol as energy substrates in the rat heart subjected to 5 days of physical exercise
Anahtar Kelime:

Konular: Kalp ve Kalp Damar Sistemi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881-40.
  • 2. Opie LH. The Heart; Fuels: aerobic and anaerobic metabolism. In: Lionel H. Opie, editor. Heart Physiology: from cell to circulation. Lippincott Williams & Wilkins, Philadelphia, 2003. p. 306-9.
  • 3. Mellor KM, Wendt IR, Ritchie RH, Delbridge LM. Fructose diet treatment in mice induces fundamental disturbance of cardiomyocyte Ca2+ handling and myofilament responsiveness. Am J Physiol Heart Circ Physiol 2012; 15: H964-72.
  • 4. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010; 90: 23-46.
  • 5. Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem 2012; 23: 203-8.
  • 6. Byars A, Keith S, Simpson W, Mooneyhan A, Greenwood M. The influence of a pre-exercise sports drink (PRX) on factors related to maximal aerobic performance. J Int Soc Sports Nutr 2010;7:12.
  • 7. Jeukendrup AE. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care 2010; 13: 452-7.
  • 8. Noh HL, Hu Y, Park TS, DiCioccio T, Nichols AJ, Okajima K, et al. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat. J Pharmacol Exp Ther 2009; 328: 496-503.
  • 9. Feinman RD, Fine EJ. Fructose in perspective. Nutr Metab (Lond) 2013; 10: 45.
  • 10. Mellor KM, Bell JR, Wendt IR, Davidoff AJ, Ritchie RH, Delbridge LM. Fructose modulates cardiomyocyte excitation-contraction coupling and Ca2+ handling in vitro. PLoS One 2011; 6:e25204.
  • 11. Kozlowski S, Nazar K, Brzezinska Z, Stephens D, Kaciuba-Uscilko H, Kobryn A. Mechanism of sympathetic activation during prolonged physical exercise in dogs. The role of hepatic glucoreceptors. Pflugers Arch 1983; 399: 63-7.
  • 12. Hibuse T, Maeda N, Nakatsuji H, Tochino Y, Fujita K, Kihara S, et al. The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc Res 2009; 83: 34-41.
  • 13. Dickson EW, Hogrefe CP, Ludwig PS, Ackermann LW, Stoll LL, Denning GM. Exercise enhances myocardial ischemic tolerance via an opioid receptor-dependent mechanism. Am J Physiol Heart Circ Physiol 2008; 294: H402-H8.
  • 14. Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, et al. Phosphoinositide 3-kinase p110 alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 2012; 5: 523-34.
  • 15. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30: e36.
  • 16. Zhu X, Jiang S, Hu Y, Zheng X, Zou S, Wang Y, et al. The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev 2010; 86: 657-63.
  • 17. Medina Villaamil V, Aparicio Gallego G, Valbuena Rubira L, Garcia Campelo R, Valladares-Ayerbes M, Grande Pulido E, et al. Fructose transporter GLUT5 expression in clear renal cell carcinoma. Oncol Rep 2011; 25: 315-23.
  • 18. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 2010; 298: E141-5.
  • 19. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013; 34: 121-38.
  • 20. Gambert S, Helies-Toussaint C, Grynberg A. Extracellular glycerol regulates the cardiac energy balance in a working rat heart model. Am J Physiol Heart Circ Physiol 2007; 292: H1600-6.
  • 21. Hibuse T, Maeda N, Nagasawa A, Funahashi T. Aquaporins and glycerol metabolism. Biochim Biophys Acta 2006; 1758: 1004-11.
  • 22. Rogers PJ, Tyce GM, Weinshilboum RM, O'Connor DT, Bailey KR, Bove AA. Catecholamine metabolic pathways and exercise training. Plasma and urine catecholamines, metabolic enzymes, and chromogranin-A. Circulation 1991; 84: 2346-56.
  • 23. Basco D, Blaauw B, Pisani F, Sparaneo A, Nicchia GP, Mola MG, et al. AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations. PLoS One 2013; 8: e58712.
  • 24. Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P, Behavioural Weight Management Review Group Diet or exercise interventions vs. combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet 2014; 114: 1557-68.
  • 25. Bidwell AJ, Fairchild TJ, Redmond J, Wang L, Keslacy S, Kanaley JA. Physical activity offsets the negative effects of a high-fructose diet. Med Sci Sports Exerc 2014; 46: 2091-8.
  • 26. Bursac BN, Djordjevic AD, Vasiljevic AD, Milutinovic DD, Velickovic NA, Nestorovic NM, et al. Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J Nutr Biochem 2013; 24: 1166-72.
  • 27. Rippe JM, Angelopoulos TJ. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know? Adv Nutr 2013; 4: 236-45.
  • 28. Moraes-Silva IC, Mostarda C, Moreira ED, Silva KA, dos Santos F, de Angelis K, et al. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development. J Appl Physiol 2013 15; 114: 786-91.
  • 29. Mostarda C1, Moraes-Silva IC, Salemi VM, Machi JF, Rodrigues B, De Angelis K, et al. Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats. Clinics 2012; 67: 815-20.
  • 30. Morvan E, Lima NE, Machi JF, Mostarda C, De Angelis K, Irigoyen MC, et al. Metabolic, hemodynamic and structural adjustments to low intensity exercise training in a metabolic syndrome model. Cardiovasc Diabetol 2013; 12: 89.
  • 31. Beigy M, Vakili S, Berijani S, Aminizade M, Ahmadi-Dastgerdi M, Meshkani R. Alternate-day fasting diet improves fructose-induced insulin resistance in mice. J Anim Physiol Anim Nutr 2013; 97: 1125-31.
  • 32. Fernandes T, Soci UP, Oliveira EM. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 2011; 44: 836-47.
  • 33. Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 2008; 40: 2023-39.
APA KARACA A, PALABIYIK O, TAŞTEKİN E, Turan F, VARDAR S (2016). High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. , 916 - 922.
Chicago KARACA Aziz KARACA,PALABIYIK Orkide,TAŞTEKİN Ebru,Turan Fatma Nesrin,VARDAR Selma Arzu High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. (2016): 916 - 922.
MLA KARACA Aziz KARACA,PALABIYIK Orkide,TAŞTEKİN Ebru,Turan Fatma Nesrin,VARDAR Selma Arzu High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. , 2016, ss.916 - 922.
AMA KARACA A,PALABIYIK O,TAŞTEKİN E,Turan F,VARDAR S High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. . 2016; 916 - 922.
Vancouver KARACA A,PALABIYIK O,TAŞTEKİN E,Turan F,VARDAR S High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. . 2016; 916 - 922.
IEEE KARACA A,PALABIYIK O,TAŞTEKİN E,Turan F,VARDAR S "High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart." , ss.916 - 922, 2016.
ISNAD KARACA, Aziz KARACA vd. "High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart". (2016), 916-922.
APA KARACA A, PALABIYIK O, TAŞTEKİN E, Turan F, VARDAR S (2016). High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. The Anatolian Journal of Cardiology, 16(12), 916 - 922.
Chicago KARACA Aziz KARACA,PALABIYIK Orkide,TAŞTEKİN Ebru,Turan Fatma Nesrin,VARDAR Selma Arzu High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. The Anatolian Journal of Cardiology 16, no.12 (2016): 916 - 922.
MLA KARACA Aziz KARACA,PALABIYIK Orkide,TAŞTEKİN Ebru,Turan Fatma Nesrin,VARDAR Selma Arzu High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. The Anatolian Journal of Cardiology, vol.16, no.12, 2016, ss.916 - 922.
AMA KARACA A,PALABIYIK O,TAŞTEKİN E,Turan F,VARDAR S High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. The Anatolian Journal of Cardiology. 2016; 16(12): 916 - 922.
Vancouver KARACA A,PALABIYIK O,TAŞTEKİN E,Turan F,VARDAR S High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. The Anatolian Journal of Cardiology. 2016; 16(12): 916 - 922.
IEEE KARACA A,PALABIYIK O,TAŞTEKİN E,Turan F,VARDAR S "High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart." The Anatolian Journal of Cardiology, 16, ss.916 - 922, 2016.
ISNAD KARACA, Aziz KARACA vd. "High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart". The Anatolian Journal of Cardiology 16/12 (2016), 916-922.