ÖMER FARUK ERTUĞRUL
(Batman Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Batman, Türkiye)
MEHMET EMİN TAĞLUK
(İnönü Üniversitesi, Mühendislik Fakültesi, Elekrik Elektronik Mühendisliği Bölümü, Malatya, Türkiye)
Yıl: 2017Cilt: 25Sayı: 4ISSN: 1300-0632 / 1300-0632Sayfa Aralığı: 3409 - 3420İngilizce

65 2
A fast feature selection approach based on extreme learning machine and coefficient of variation
Fen > Mühendislik > Mühendislik, Elektrik ve Elektronik
DergiAraştırma MakalesiErişime Açık
  • [1] Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003; 3: 1157-1182.
  • [2] Ladha L, Deepa T. Feature selection methods and algorithms. Int J Comput Sci Eng 2011; 3: 1787-1797.
  • [3] Dash M, Liu H. Feature selection for classification. Intell Data Anal 1997; 1: 131-156.
  • [4] Atyabi A, Luerssen M, Fitzgibbon S, Powers DM. Evolutionary feature selection and electrode reduction for EEG classification. In: IEEE 2012 Evolutionary Computation Congress; 10–15 June 2012; Brisbane, Australia. New York, NY, USA: IEEE. pp. 1-8.
  • [5] Sanchez-Monedero J, Cruz-Ramirez M, Fern´andez-Navarro F, Fern´andez JC, Guti´errez PA, Herv´as-Mart´ınez C. On the suitability of Extreme Learning Machine for gene classification using feature selection. In: IEEE 2010 Intelligent Systems Design and Applications Conference; 29 November–1 December 2010; Cairo, Egypt. New York, NY, USA: IEEE. pp. 507-512.
  • [6] Melita NT, Popescu I, Holban S. A genetic algorithm approach to DNA microarrays analysis of pancreatic cancer. Adv Electr Comput En 2008; 8: 43-48.
  • [7] Saeys Y, Inza I, Larra˜naga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23: 2507-2517.
  • [8] Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell 1997; 97: 245-271.
  • [9] Fodor IK. A Survey of Dimension Reduction Techniques.. Washington, DC, USA: US Department of Energy, 2002.
  • [10] Dubois D, Fargier H, Bonnefon JF. On the qualitative comparison of decisions having positive and negative features. J Artif Intell Res 2008; 32: 385-417.
  • [11] Hawkins DM. The problem of overfitting. J Chem Inform Comput Sci 2004; 44: 1-12.
  • [12] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006; 70: 489-501.
  • [13] Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE 2004 Neural Networks Conference; 25–29 July 2004; Budapest, Hungary. New York, NY, USA: IEEE. pp. 985-990.
  • [14] Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011; 2: 107-122.
  • [15] Zhai MY, Yu RH, Zhang SF, Zhai JH. Feature selection based on extreme learning machine. In: IEEE 2012 Machine Learning and Cybernetics Conference; 15–17 July 2012; Xian, China. New York, NY, USA: IEEE. pp. 157-162.
  • [16] Benoˆıt F, Van Heeswijk M, Miche Y, Verleysen M, Lendasse A. Feature selection for nonlinear models with extreme learning machines. Neurocomputing 2013; 102: 111-124.
  • [17] Termenon M, Gra˜na M, Barr´os-Loscertales A, Avila C. Extreme learning machines for feature selection and ´ classification of cocaine dependent patients on structural MRI data. Neural Process Lett 2013; 38: 375-387.
  • [18] Salcedo-Sanz S, Pastor-S´anchez A, Prieto L, Blanco-Aguilera A, Garc´ıa-Herrera R. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization—extreme learning machine approach. Energ Convers Manag 2014; 87: 10-18.
  • [19] Abdi H. Coefficient of variation. In: Salkind NJ, editor. Encyclopedia of Research Design. Thousand Oaks, CA, USA: SAGE Publications, 2010. pp. 169-171.
  • [20] Kumar D, Unikrishnan P. Class specific feature selection for identity validation using dynamic signatures. J Biom Biostat 2013; 4: 1000160-1–1000160-5.
  • [21] Nakariyakul S, Casasent D. Hyperspectral feature selection and fusion for detection of chicken skin tumors. Proc SPIE 2004; 5271: 128-139.
  • [22] Habib M, Rokonuzzaman M. Distinguishing feature selection for fabric defect classification using neural network. J Multimed 2011; 6: 416-424.
  • [23] Ertu˘grul OF, Kaya Y, Kaycı L, Tekin R. A vision system for classifying butterfly species by using Law’s texture ¨ energy measures. Int J Comput Vis Mach Learn Data Min 2015; 1: 20-28.
  • [24] Kaya Y, Kayci L, Tekin R, Ertu˘grul OF. Evaluation of texture features for automatic detecting butterfly species ¨ using extreme learning machine. J Exp Theor Artif Intell 2014; 26: 267-281.
  • [25] Ertu˘grul OF, Ta˘gluk ME, Kaya Y, Tekin R. EMG signal classification by extreme learning machine. In: IEEE 2013 Signal Processing and Communications Applications Conference; 24–26 April 2013; Haspolat, Turkey. New York,NY, USA: IEEE. pp. 1-4.
  • [26] Bache K, Lichman M. UCI Machine Learning Repository. Irvine, CA, USA: University of California, 2013.
  • [27] Ramana BV, Babu P, Surendra M, Venkateswarlu NB. A critical study of selected classification algorithms for liver disease diagnosis. Int J Database Manag Syst 2011; 3: 101-114.
  • [28] Ramana BV, Babu P, Surendra M, Venkateswarlu NB. A critical comparative study of liver patients from USA and India: an exploratory analysis. Int J Comput Sci 2012; 9: 506-516.
  • [29] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001; 64: 061907-1–061907-8.
  • [30] Ta˘gluk ME, Ertu˘grul OF. A joint generalized exemplar method for classification of massive datasets. Appl Soft ¨ Comput 2015; 36: 487-498.
  • [31] Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cognit Comput 2014; 6: 376-390.
  • [32] Wang R, Kwong S, Wang X. A study on random weights between input and hidden layers in extreme learning machine. Soft Comput 2012; 16: 1465-1475.
  • [33] Huang GB, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010; 74: 155-163.
  • [34] Ertu˘grul OF. Forecasting electricity load by a novel recurrent extreme learning machines approach. Int J Electr ¨ Power Energ Syst 2016; 78: 429-435.
  • [35] Rong HJ, Ong YS, Tan AH, Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008; 72: 359-366.
  • [36] Milani AS, Eskicioglu C, Robles K, Bujun K, Hosseini-Nasab H. Multiple criteria decision making with life cycle assessment for material selection of composites. Express Polymer Lett 2011; 5: 1062-1074.
  • [37] Guo G, Wang H, Bell D, Bi Y, Greer K. Using kNN model for automatic text categorization. Soft Comput 2006; 10: 423-430.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.