Yıl: 2017 Cilt: 41 Sayı: 1 Sayfa Aralığı: 20 - 30 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Th1 cells in cancer-associated inflammation

Öz:
The immune system is not only evolved to protect the body from pathogens, but it also recognizes and eliminates cancer cells. CD4+ helper T (Th) lymphocytes are central intercessors differentiated according to the character of physiological or pathological status. Generation of type 1 Th (Th1) cells is primarily associated with a pathological insult that must be removed through immune elimination. Upon interacting with other immune and transformed cells, Th1 cells can hamper cancer progression. Therefore, it is a major obstacle for tumor cells to become insensitive or resistant to Th1-oriented actions. The organism employs various mechanisms to return to a steady state and ensure tissue repair following a destructive inflammatory response. Th1 cells are also tightly regulated during the termination of immune responses. They can reduce the production of inflammatory cytokines, both generate and be prone to inhibitory signals, and undergo activation-induced cell death for inflammation resolution. Additionally, Th1 cells may become hyporesponsive, exhausted, and decorated with many inhibitory receptors and eventually lose functionality. There is growing evidence about tumor cells taking advantage of the strategies used for the resolution of Th1-oriented inflammation. Here, the current insights on Th1 cells during cancer-associated inflammatory responses are reviewed.
Anahtar Kelime:

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abbas AK, Lichtman AH, Pillai S (2014). Cellular and Molecular Immunology. 8th ed. Philadelphia, PA, USA: Elsevier Saunders.
  • Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, Yoshioka Y, Baba T, Konishi I, Mandai M (2015). IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 112: 1501-1509.
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478-480.
  • Bos R, Sherman LA (2010). CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res 70: 8368-8377.
  • Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C (2013). T-helper-1-cell cytokines drive cancer into senescence. Nature 494: 361-365.
  • Briesemeister D, Sommermeyer D, Loddenkemper C, Loew R, Uckert W, Blankenstein T, Kammertoens T (2011). Tumor rejection by local interferon gamma induction in established tumors is associated with blood vessel destruction and necrosis. Int J Cancer 128: 371-378.
  • Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM (2011). Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol 18: 23-34.
  • Church SE, Jensen SM, Antony PA, Restifo NP, Fox BA (2014). Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells. Eur J Immunol 44: 69-79.
  • Corazza N, Brumatti G, Schaer C, Cima I, Wasem C, Brunner T (2004). TRAIL and immunity: more than a license to kill tumor cells. Cell Death Differ 11 (Suppl. 2): S122-125.
  • Cousins DJ, Lee TH, Staynov DZ (2002). Cytokine coexpression during human Th1/Th2 cell differentiation: direct evidence for coordinated expression of Th2 cytokines. J Immunol 169: 2498-506.
  • Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF (1999). Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162: 3256-3262.
  • De Groot RP, Coffer PJ, Koenderman L (1998). Regulation of proliferation, differentiation and survival by the IL-3/IL-5/ GM-CSF receptor family. Cell Signal 10: 619-628.
  • Delves PJ, Roitt IM (2011). Roitt’s Essential Immunology. 12th ed. Chichester, UK: Wiley-Blackwell.
  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J et al. (1994). Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264: 703-707.
  • Dinarello CA (1999). IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103: 11-24.
  • Dong C (2006). Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6: 329- 333.
  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche, Lu J, Zhu G, Tamada K (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8: 793-800.
  • Dunn GP, Old LJ, Schreiber RD (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329-360.
  • Echchakir H, Bagot M, Dorothee G, Martinvalet D, Le Gouvello S, Boumsell L, Chouaib S, Bensussan A, Mami-Chouaib F (2000). Cutaneous T cell lymphoma reactive CD4+ cytotoxic T lymphocyte clones display a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. J Invest Dermatol 115: 74-80.
  • Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P (1990). Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60: 397-403.
  • Finkelman FD, Katona IM, Mosmann TR, Coffman RL (1988). IFNgamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol 140: 1022-1027.
  • Finn OJ (2008). Cancer immunology. N Engl J Med 358: 2704-2715.
  • Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006). Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 203: 2223-2227.
  • Fuller MJ, Khanolkar A, Tebo AE, Zajac AJ (2004). Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J Immunol 172: 4204-4214.
  • Fuller MJ, Zajac AJ (2003). Ablation of CD8 and CD4 T cell responses by high viral loads. J Immunol 170: 477-486.
  • Gabrilovich DI, Nagaraj S (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9: 162- 174.
  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, LagorcePages C, Tosolini M, Camus M, Berger A, Wind P (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960-1964.
  • Gately MK, Wolitzky AG, Quinn PM, Chizzonite R (1992). Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 143: 127-142.
  • Germano G, Allavena P, Mantovani A (2008). Cytokines as a key component of cancer-related inflammation. Cytokine 43: 374- 379.
  • Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE, Antony PA (2013). Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 190: 4899-4909.
  • Goldrath AW, Bevan MJ (1999). Selecting and maintaining a diverse T-cell repertoire. Nature 402: 255-262.
  • Grivennikov SI, Greten FR, Karin M (2010). Immunity, inflammation, and cancer. Cell 140: 883-899.
  • Groom JR, Luster AD (2011). CXCR3 in T cell function. Exp Cell Res 317: 620-631.
  • Guthridge MA, Stomski FC, Thomas D, Woodcock JM, Bagley CJ, Berndt MC, Lopez AF (1998). Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16: 301-313.
  • Harris NL, Ronchese F (1999). The role of B7 costimulation in T-cell immunity. Immunol Cell Biol 77: 304-311.
  • Herndler-Brandstetter D, Flavell RA (2014). Producing GM-CSF: a unique T helper subset? Cell Res 24: 1379-1380.
  • Hislop AD, Sabbah S (2008). CD8+ T cell immunity to Epstein-Barr virus and Kaposi’s sarcoma-associated herpes virus. Semin Cancer Biol 18: 416-422.
  • Hunziker L, Klenerman P, Zinkernagel RM, Ehl S (2002). Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by B cells or CD4+ T cells. Eur J Immunol 32: 374-382.
  • Iezzi G, Karjalainen K, Lanzavecchia A (1998). The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8: 89-95.
  • Ikeda H, Old LJ, Schreiber RD (2002). The roles of IFNγ in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13: 95-109.
  • Janeway C (2005). Immunobiology: The Immune System in Health and Disease. 6th ed. New York, NY, USA: Garland Science.
  • Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP (2005). CD4+ T-cell help controls CD8+ T-cell memory via TRAILmediated activation-induced cell death. Nature 434: 88-93.
  • Jeremias I, Herr I, Boehler T, Debatin KM (1998). TRAIL/Apo-2- ligand-induced apoptosis in human T cells. Eur J Immunol 28: 143-152.
  • John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013). AntiPD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19: 5636-5646.
  • Kaech SM, Wherry EJ, Ahmed R (2002). Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2: 251-262.
  • Katagiri K, Hattori M, Minato N, Kinashi T (2002). Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol Cell Biol 22: 1001-1015.
  • Kennedy R, Celis E (2008). Multiple roles for CD4+ T cells in antitumor immune responses. Immunol Rev 222: 129-144.
  • Khong HT, Restifo NP (2002). Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3: 999-1005.
  • Knutson KL, Disis ML (2005). Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54: 721-728.
  • Kohu K, Ohmori H, Wong WF, Onda D, Wakoh T, Kon S, Yamashita M, Nakayama T, Kubo M, Satake M (2009) The Runx3 transcription factor augments Th1 and down-modulates Th2 phenotypes by interacting with and attenuating GATA3. J Immunol 183: 7817-7824.
  • Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Zhu L, Zeng H, Schell TD, Zheng H (2015). PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J 5: e330.
  • Lazarevic V, Glimcher LH, Lord GM (2013). T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 13: 777-789.
  • Legat A, Speiser DE, Pircher H, Zehn D, Fuertes Marraco SA (2013). Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front Immunol 4: 455.
  • Luckheeram RV, Zhou R, Verma AD, Xia B (2012). CD4+T cells: differentiation and functions. Clin Dev Immunol 2012: 925135.
  • Ma DY, Clark EA (2009). The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 21: 265-272.
  • Manson LA (1994). Anti-tumor immune responses of the tumorbearing host: the case for antibody-mediated immunologic enhancement. Clin Immunol Immunopathol 72: 1-8.
  • Mantovani A, Allavena P, Sica A, Balkwill F (2008). Cancer-related inflammation. Nature 454: 436-444.
  • Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009). Tumor-associated macrophages and the related myeloidderived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70: 325-330.
  • Marodi L, Schreiber S, Anderson DC, MacDermott RP, Korchak HM, Johnston RB Jr (1993). Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J Clin Invest 91: 2596-2601.
  • Matloubian M, Concepcion RJ, Ahmed R (1994). CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68: 8056-8063.
  • Matsuzaki J, Tsuji T, Luescher I, Old LJ, Shrikant P, Gnjatic S, Odunsi K (2014). Nonclassical antigen-processing pathways are required for MHC class II-restricted direct tumor recognition by NY-ESO-1-specific CD4+ T cells. Cancer Immunol Res 2: 341-350.
  • Meyers JH, Ryu A, Monney L, Nguyen K, Greenfield EA, Freeman GJ, Kuchroo VK (2002). Cutting edge: CD94/NKG2 is expressed on Th1 but not Th2 cells and costimulates Th1 effector functions. J Immunol 169: 5382-5386.
  • Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014). New insights into cancer immunoediting and its three component phaseselimination, equilibrium and escape. Curr Opin Immunol 27: 16-25.
  • Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L (2008). NK cells at the interface between innate and adaptive immunity. Cell Death Differ 15: 226-233.
  • Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA (2008). TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13: 507-518.
  • Muller AJ, Prendergast GC (2005). Marrying immunotherapy with chemotherapy: why say IDO? Cancer Res 65: 8065-8068.
  • Munn DH, Mellor AL (2007). Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117: 1147-1154.
  • Naujokat C, Sezer O, Possinger K (1999). Tumor necrosis factoralpha and interferon-gamma induce expression of functional Fas ligand on HT29 and MCF7 adenocarcinoma cells. Biochem Biophys Res Commun 264: 813-819.
  • Nurieva RI, Liu X, Dong C (2009). Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev 229: 88-100.
  • Ou R, Zhou S, Huang L, Moskophidis D (2001). Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 75: 8407-8423.
  • Owaki T, Asakawa M, Morishima N, Hata K, Fukai F, Matsui M, Mizuguchi J, Yoshimoto T (2005). A role for IL-27 in early regulation of Th1 differentiation. J Immunol 175: 2191-2200.
  • Pardoll DM (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12: 252-264.
  • Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527: 249-253.
  • Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, Roger T, Lacabaratz C, Bart PA, Levy Y (2014). Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med 211: 2033-2045.
  • Peter C, Wesselborg S, Herrmann M, Lauber K (2010). Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 15: 1007-1028.
  • Pettit SJ, Seymour K, O’Flaherty E, Kirby JA (2000). Immune selection in neoplasia: towards a microevolutionary model of cancer development. Br J Cancer 82: 1900-1906.
  • Pilon-Thomas S, Mackay A, Vohra N, Mule JJ (2010). Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J Immunol 184: 3442-3449.
  • Powell DJ, Dudley ME, Robbins PF, Rosenberg SA (2005). Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105: 241-250.
  • Prieto PA, Durflinger KH, Wunderlich JR, Rosenberg SA, Dudley ME (2010). Enrichment of CD8+ cells from melanoma tumorinfiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy. J Immunother 33: 547-556.
  • Rakoff-Nahoum S (2006). Why cancer and inflammation? Yale J Biol Med 79: 123-130.
  • Randolph GJ, Ochando J, Partida-Sanchez S (2008). Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26: 293-316.
  • Roach DR, Briscoe H, Saunders B, France MP, Riminton S, Britton WJ (2001). Secreted lymphotoxin-alpha is essential for the control of an intracellular bacterial infection. J Exp Med 193: 239-246.
  • Romagnani S (2000). T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85: 9-18; quiz 18, 21.
  • Rutz S, Janke M, Kassner N, Hohnstein T, Krueger M, Scheffold A (2008). Notch regulates IL-10 production by T helper 1 cells. P Natl Acad Sci USA 105: 3497-3502.
  • Sad S, Marcotte R, Mosmann TR (1995). Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2: 271- 279.
  • Sansonetti PJ (2011). To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4: 8-14.
  • Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM, O’Garra A (2009). Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31: 209-219.
  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004). Interferongamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163-189.
  • Seitzer U, Scheel-Toellner D, Hahn M, Heinemann G, Mattern T, Flad HD, Gerdes J (1997). Comparative study of CD26 as a Th1-like and CD30 as a potential Th2-like operational marker in leprosy. Adv Exp Med Biol 421: 217-221.
  • Sica A, Allavena P, Mantovani A (2008). Cancer related inflammation: the macrophage connection. Cancer Lett 267: 204-215.
  • Snapper CM, Peschel C, Paul WE (1988). IFN-gamma stimulates IgG2a secretion by murine B cells stimulated with bacterial lipopolysaccharide. J Immunol 140: 2121-2127.
  • Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML (1998). Highlevel IL-12 production by human dendritic cells requires two signals. Int Immunol 10: 1593-1598.
  • Speiser DE, Utzschneider DT, Oberle SG, Munz C, Romero P, Zehn D (2014). T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat Rev Immunol 14: 768-774.
  • Swann JB, Smyth MJ (2007). Immune surveillance of tumors. J Clin Invest 117: 1137-1146.
  • Sytwu HK, Liblau RS, McDevitt HO (1996). The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5: 17-30.
  • Trinchieri G (1993). Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 14: 335-338.
  • Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M et al. (2013). Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. P Natl Acad Sci USA 110: 11103-11108.
  • Van Parijs L, Abbas AK (1998). Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280: 243-248.
  • Van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001). Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2: 423-429.
  • Vaughan AT, Roghanian A, Cragg MS (2011). B cells--masters of the immunoverse. Int J Biochem Cell Biol 43: 280-285.
  • Vignali DA, Collison LW, Workman CJ (2008). How regulatory T cells work. Nat Rev Immunol 8: 523-532.
  • Virgin HW, Wherry EJ, Ahmed R (2009). Redefining chronic viral infection. Cell 138: 30-50.
  • Vrisekoop N, Monteiro JP, Mandl JN, Germain RN (2014). Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 41: 181-190.
  • Wassink L,  Vieira PL,  Smits HH,  Kingsbury GA,  Coyle AJ,  Kapsenberg ML,  Wierenga EA (2004). ICOS expression by activated human Th cells is enhanced by IL-12 and IL-23: increased ICOS expression enhances the effector function of both Th1 and Th2 cells. J Immunol 173: 1779-1786.
  • Weber C, Weber KS, Klier C, Gu S, Wank R, Horuk R, Nelson PJ (2001). Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/ CD45RO(+) T cells. Blood 97: 1144-6.
  • Wherry EJ, Ahmed R (2004). Memory CD8 T-cell differentiation during viral infection. J Virol 78: 5535-5545.
  • Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003). Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77: 4911-4927.
  • Wong SBJ, Bos R, Sherman LA (2008). Tumor-specific CD4+ T cells render the tumor environment permissive for infiltration by low-avidity CD8+ T cells. J Immunol 180: 3122-3131.
  • Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ, Hwu P, Radvanyi LG (2012). Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 18: 160-175.
  • Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y (2014). Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28: 1280-1288.
  • Zhou Q, Xiao H, Liu Y, Peng Y, Hong Y, Yagita H, Chandler P, Munn DH, Mellor A, Fu N (2010). Blockade of programmed death-1 pathway rescues the effector function of tumor-infiltrating T cells and enhances the antitumor efficacy of lentivector immunization. J Immunol 185: 5082-5092.
  • Zitvogel L, Tesniere A, Kroemer G (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6: 715-727.
APA DİNÇ AKBULUT G, ÖZKAZANÇ D, ESENDAĞLI G (2017). Th1 cells in cancer-associated inflammation. , 20 - 30.
Chicago DİNÇ AKBULUT GÜNEŞ,ÖZKAZANÇ Didem,ESENDAĞLI Güneş Th1 cells in cancer-associated inflammation. (2017): 20 - 30.
MLA DİNÇ AKBULUT GÜNEŞ,ÖZKAZANÇ Didem,ESENDAĞLI Güneş Th1 cells in cancer-associated inflammation. , 2017, ss.20 - 30.
AMA DİNÇ AKBULUT G,ÖZKAZANÇ D,ESENDAĞLI G Th1 cells in cancer-associated inflammation. . 2017; 20 - 30.
Vancouver DİNÇ AKBULUT G,ÖZKAZANÇ D,ESENDAĞLI G Th1 cells in cancer-associated inflammation. . 2017; 20 - 30.
IEEE DİNÇ AKBULUT G,ÖZKAZANÇ D,ESENDAĞLI G "Th1 cells in cancer-associated inflammation." , ss.20 - 30, 2017.
ISNAD DİNÇ AKBULUT, GÜNEŞ vd. "Th1 cells in cancer-associated inflammation". (2017), 20-30.
APA DİNÇ AKBULUT G, ÖZKAZANÇ D, ESENDAĞLI G (2017). Th1 cells in cancer-associated inflammation. Turkish Journal of Biology, 41(1), 20 - 30.
Chicago DİNÇ AKBULUT GÜNEŞ,ÖZKAZANÇ Didem,ESENDAĞLI Güneş Th1 cells in cancer-associated inflammation. Turkish Journal of Biology 41, no.1 (2017): 20 - 30.
MLA DİNÇ AKBULUT GÜNEŞ,ÖZKAZANÇ Didem,ESENDAĞLI Güneş Th1 cells in cancer-associated inflammation. Turkish Journal of Biology, vol.41, no.1, 2017, ss.20 - 30.
AMA DİNÇ AKBULUT G,ÖZKAZANÇ D,ESENDAĞLI G Th1 cells in cancer-associated inflammation. Turkish Journal of Biology. 2017; 41(1): 20 - 30.
Vancouver DİNÇ AKBULUT G,ÖZKAZANÇ D,ESENDAĞLI G Th1 cells in cancer-associated inflammation. Turkish Journal of Biology. 2017; 41(1): 20 - 30.
IEEE DİNÇ AKBULUT G,ÖZKAZANÇ D,ESENDAĞLI G "Th1 cells in cancer-associated inflammation." Turkish Journal of Biology, 41, ss.20 - 30, 2017.
ISNAD DİNÇ AKBULUT, GÜNEŞ vd. "Th1 cells in cancer-associated inflammation". Turkish Journal of Biology 41/1 (2017), 20-30.