MEHMET YEŞİLBUDAK
(Nevşehir Hacı Bektaş Veli Üniversitesi)
SALİH ERMİŞ
(Ahi Evran Üniversitesi)
RAMAZAN BAYINDIR
(Gazi Üniversitesi)
Yıl: 2017Cilt: 5Sayı: 3ISSN: 2147-9526Sayfa Aralığı: 237 - 246Türkçe

314 11
Farklı Bara Sayısına Sahip Güç Sistemlerinde Yük Akışı Analiz Metotlarının Karşılaştırılması
Günümüzde, artan enerji talebine paralel olarak üretim ve tüketim noktaları sürekli artmakta ve güç sistemleri hızla büyümektedir. Ancak, güç sistemlerinin güvenli, verimli ve devamlılığı sağlayacak bir şekilde planlanması, tesisi ve işletilmesi oldukça önemlidir. Bu amaçla, özellikle yük akış analizi olmak üzere güç sistemlerinde koruma-koordinasyon, kısıtlılık, kararlılık, kısa devre vb. analizler yapılmaktadır. Bu çalışmada, yük akış analizinde yaygın olarak kullanılan Gauss-Seidel, Newton-Raphson ve Fast Decoupled metotlarının farklı tolerans değerleri açısından iterasyon sayılarına, hesaplama sürelerine, toplam hat kayıplarına, üretilen ve tüketilen aktif ve reaktif güçlere göre karşılaştırmaları yapılmıştır. Test sistemleri olarak IEEE'nin 6, 14, 30 ve 57 baralı güç sistemleri Matlab ortamında kullanılmıştır. Yapılan yük akış analizleri sonucunda, her üç metot için de baralardaki yük taleplerine göre generatörlerin ürettiği güçler birbirine yakın hesaplanırken, en az iterasyon sayısı ve en az güç kaybı Newton-Raphson metodu tarafından elde edilmiştir.
DergiAraştırma MakalesiErişime Açık
  • [1] S. Tosun, "Güç sistemlerinde gerilim karalılığının sezgisel yöntemlerle incelenmesi", Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya, Sayfa 15, 2011.
  • [2] P.S.R. Murthy, "Power System Analysis", 1st Ed., Hyderabad, India: BS Publications, 2007, pp. 98- 124.
  • [3] O.A. Afolabi, W.H. Ali, P. Cofie, J. Fuller, P. Obiomon and E.S. Kolawole "Analysis of the load flow problem in power system planning studies", Energy and Power Engineering, vol. 7, pp. 509-523, September 2015.
  • [4] J. Singh and R. Bala, "A case study: Comparison of Newton-Raphson and Gauss-Seidel load flow solution techniques in distributed transmission and generation electricity networks", International Journal of Advance Electrical and Electronics Engineering, vol. 5, no. 1, pp. 2278-8948, 2016.
  • [5] S. Kumar, S. Ahmad and A. Ahmad, "Analysis of load flow study using PSO and compensate the system using FACTS device", International Journal of Engineering and Computer Science, vol. 3, pp. 6555-6560, June 2014.
  • [6] A.K. Kailay and Y.S. Brar, "Identification of best load flow calculation method for IEEE-30 bus system using MATLAB", International Journal of Electrical and Electronics Research, vol. 3, no. 3, pp. 155- 161, September 2015.
  • [7] Dharamjit and D.K. Tanti, "Load flow analysis on IEEE 30 bus system", International Journal of Scientific and Research Publications, vol. 2, no. 11, pp. 1-6, November 2012.
  • [8] T. Kulworawanichpong "Simplified Newton-Raphson power-flow solution method" International Journal of Electrical Power and Energy Systems, vol. 32, pp. 551-558, November 2010.
  • [9] C.K. Seng, T.L. Tien, J. Nanda and S. Masri, "Load flow analysis using improved Newton-Raphson Method", Applied Mechanics and Materials, vol. 793, pp. 494-499, September 2015.
  • [10] H. Mokhlis, A. Shahriari and J.A. Laghari, "Fast and accurate second order load flow method based on fixed Jacobian matrix", Applied Mathematics and Computation, vol. 269, pp. 584-593, 2015.
  • [11] S. Kamel, F. Jurado and Z. Chen, "Power flow control for transmission networks with implicit modeling of static synchronous series compensator", International Journal of Electrical Power and Energy Systems, vol. 64, pp. 911-920, September 2014.
  • [12] D. Borzacchielloa, F. Chinestaa, M.H. Malika, R. García-Blanco and P. Diez, "Unified formulation of a family of iterative solvers for power systems analysis", Electric Power Systems Research, vol. 140, pp. 201-208, June 2016.
  • [13] L.L. Grigsby, "Power Systems", Electric Power Engineering Handbook, 2nd Ed., Boca Raton, United Kingdom: CRC Press, 2007, pp. 46-56.
  • [14] R. Anand and V. Balaji, "Power flow analysis of Simulink IEEE 57 bus test system model using PSAT", Indian Journal of Science and Technology, vol 8, no. 23, September 2015.
  • [15] I. Krasniqi and A. Koka, "Power flow analysis: Simulation for different buses of a system", Journal of Institute Alb-Shkenca, vol. 4, pp. 178-187, 2011.
  • [16] D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", 3rd Ed., New Delhi, India: McGraw Hill Education Private Limited, 2003, pp. 184-239.
  • [17] J.D. Glover, M.S. Sarma and T.J. Overbye, "Power System Analysis and Design", 5th Ed., Stamford, USA; Cengage Learning, 2012, pp. 294-354.
  • [18] K. Singhal, "Comparison between load flow analysis methods in power system using MATLAB", International Journal of Scientific & Engineering Research, vol. 5, pp. 1412-1419, May 2014.
  • [19] M.H. Moradia, V.B. Foroutana and M. Abedinib, "Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach", Renewable and Sustainable Energy Reviews, vol. 69, pp. 248-262, March 2017.
  • [20] A.R. Bergen and V. Vittal, "Power Systems Analysis", 2nd Ed., New Jersey USA; Prentice Hall, 2000, pp. 323-364.
  • [21] R. Alqadi and M. Khammash, "An efficient parallel Gauss-Seidel algorithm for the solution of load flow problems", The International Arab Journal of Information Technology, vol. 4, no. 2, pp. 148-152, April 2007.
  • [22] M. Mohammadi, A. Shayegani and H. Adaminejad, "A new approach of point estimate method for probabilistic load flow", International Journal of Electrical Power and Energy Systems, vol. 51, pp. 54- 60, March 2013.
  • [23] M. A. Kusekwa, "Load flow solution of the Tanzanian power network using Newton-Raphson method and MATLAB software", International Journal of Energy and Power Engineering, vol. 3, no. 6, pp. 277-286, December 2014.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.