Yıl: 2017 Cilt: 34 Sayı: 3 Sayfa Aralığı: 252 - 264 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study

Öz:
Amaç: Çalışmalarda sol hemisfer özelleşmesinin öğrenilmiş hareketlerin temsili ve motor öğrenme için sağ hemisfere göre daha büyük olduğu gösterilmiştir. Ancak motor programlamaya yönelik ayrı bir özelleşme olup olmadığı açık değildir. Bu çalışmada sağ ve sol hemisfer üzerindeki primer motor kortekse (M1) transkraniyel direk stimulasyonun (tDCS) etkisinin karşılaştırılması araştırılmıştır. Yöntem: Katılımcılar (n= 53) üç gün periyodunda özel motor paternleri çalışmış, sol M1 ve sağ M1 grupları sırasıyla sol ve sağ M1´e eş zamanlı stimulasyon almıştır. Kök ortalamasının karesi (RMS) hatası, hareket zamanı, RMS hatası/hareket zamanı oranı ve becerilerden elde edilen veriler tekrarlayan ANOVA ölçümleri ile analiz edilmiştir. Sonuçlar: Sonuçlar tüm gruplarda zaman içerisinde test öncesi duruma göre RMS hatasında anlamlı düşüklük saptandığını (p<0.05), sol M1 grubunda retansiyon döneminde diğer gruplarla karşılaştırıldığında anlamlı olarak daha düşük RMS hatası elde edildiğini (p<0.05) göstermiştir. Ayrıca sonuçlar beceri faktoründe ilerleme oranının sol M1 grubunda sag M1 grubu ve kontrol grubuna gore daha büyük olduğunu göstermiştir. Sonuç: Sol hemisfer motor programlamada olasılıkla daha özelleşmiştir ve bu lateralitenin motor-konsolidasyon mekanizmasI dolayısıyla olduğu düşünülmektedir
Anahtar Kelime:

Konular: Nörolojik Bilimler

Beyin Hemisfer Stimülasyonunun Etkisi ve Motor Beceri Programlamada Özelleşme: Bir Transkraniyel Direk Akım Stimülasyonu Çalışması

Öz:
Background and Purpose: Studies have unanimously supported that left-hemispherespecialization is greater than the right hemisphere for representation of learned actions andmotor learning, but it is not clear as to whether there is a particular specialization related tomotor programming. This study investigated the issue by comparing the effect of transcranialdirect current stimulation (tDCS) of the primary motor cortex (M1) on the right and lefthemispheres.Methods: Participants (n=53) practiced special motor patterns for a period of three days andthe left M1 and right M1 groups received simultaneous stimulation in the left and right M1,respectively. Data obtained from root mean square (RMS) error, movement time, RMSerror/movement time ratio, and skill were analyzed using repeated measures ANOVA.Results: The results showed that although all groups experienced a significant reduction inRMS error over time relative to the pretest stage (P <0 .05), the left M1 group hadsignificantly lower RMS error only in the retention stage compared with the other groups (P<0. 05). Also, the results showed that the progress rate in skill factor was greater in the leftM1 group than in the right M1 and control groups.Conclusions: The left hemisphere is probably more specialized in motor programming, andthis laterality is expected to be through the motion-consolidation mechanism.
Anahtar Kelime:

Konular: Nörolojik Bilimler
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol 2011;24:590-596.
  • 2. Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul 2008;1:206-223.
  • 3. Nitsche M, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633-639.
  • 4. Hunter T, Sacco P, Nitsche MA, Turner DL. Modulation of internal model formation during force field induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 2009;587:2949-2961.
  • 5. Nitsche MA, Schauenburg A, Lang N, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 2003;15:619-626.
  • 6. Utz KS, Dimova V, Oppenländer K, Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology?A review of current data and future implications. Neuropsychologia 2010;48:2789-2810.
  • 7. Stöckel T, Weigelt M. Brain lateralisation and motor learning: Selective effects of dominant and non-dominant hand practice on the early acquisition of throwing skills. Laterality 2012;17:18-37.
  • 8. Schambra HM, Abe M, Luckenbaugh DA, Reis J, Krakauer JW, Cohen LG. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol 2011;106:652-661.
  • 9. Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 2006;7:160-166.
  • 10. Reisa J, Schambraa HM, Cohen LG, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009 ;106:1590-1595.
  • 11. Banich MT. The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 1998;36:128-!57.
  • 12. Mutha PK, Sainburg RL, Haaland KY. Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain 2011;134:3647-3661.
  • 13. Schaefer SY, Mutha PK, Haaland KY, Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex 2012;22:1407-1419.
  • 14. Schaefer SY, Haaland KY, Sainburg RL. Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res 2009;1298:78-91.
  • 15. Mutha PK, Haaland KY, Sainburg RL. The effects of brain lateralization on motor control and adaptation. J Motor Behav 2012;44:455-469.
  • 16. Zwinkels A, Geusgens C, van de Sande P, van Heugten C. Assessment of apraxia: inter-rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting. Clin Rehabil 2004;18:819-827.
  • 17. Goldenberg G. Apraxia and beyond: life and work of Hugo Liepmann. Cortex 2003;39:509-524.
  • 18. Pearce J. Hugo Karl Liepmann and apraxia. Clin Med (Lond) 2009;9:466-470.
  • 19. Bohlhalter S, Hattori N, Wheaton L, et al. Gesture subtype-dependent left lateralization of praxis planning: An event-related fMRI study. Cereb Cortex 2009;19:1256-1262.
  • 20. Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G. Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 1998;37:147-158.
  • 21. Carroll TJ, Lee M, Hsu M, Sayde J. Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. J Appl Physiol (1985) 2008;104:1656- 1664.
  • 22. Cirillo J, Rogasch NC, Semmler JG. Hemispheric differences in use-dependent corticomotor plasticity in young and old adults. Exp Brain Res 2010;205:57-68.
  • 23. Monfils M-H, Plautz EJ, Kleim JA. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 2005;11:471-483.
  • 24. Sabaté M, González B, Rodriguez M. Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization. Neuropsychologia 2004;42:1041-1049.
  • 25. Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 2002;78:553-564.
  • 26. Reis J, Robertson EM, Krakauer JW, et al. Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? Brain Stimul 2008;1:363-369.
  • 27. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97-113.
  • 28. Wulf G, Schmidt RA. Feedback-induced variability and the learning of generalized motor programs. J Mot Behav 1994;26:348-61.
  • 29. Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. International journal of forecasting. 2006;22:679-688.
  • 30. Horn RR, Williams AM, Scott MA, Hodges NJ. Visual search and coordination changes in response to video and point-light demonstrations without KR. J Motor Behav 2005;37:265.
  • 31. Mullineaux DR, Bartlett RM, Bennett S. Research design and statistics in biomechanics and motor control. J Sports Sci 2001;19:739-60.
  • 32. Stagg C, O`shea J, Kincses Z, Woolrich M, Matthews P, Johansen-Berg H. Modulation of movement associated cortical activation by transcranial direct current stimulation. Eur J Neurosci 2009;30:1412-1423.
  • 33. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage 2007;35:1113-1124.
  • 34. Keeser D, Padberg F, Reisinger E, et al. Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage 2011;55:644-657.
  • 35. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 2006;117:845-850.
  • 36. Hall CR, Martin KA. Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. Journal of mental imagery. 1997.
  • 37. Stagg CJ, Bachtiar V, Johansen-Berg H. The Role of GABA in Human Motor Learning. Curr Biol 2011;6:480-484.
  • 38. Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010;66:198-204.
  • 39. Bütefisch CM, Khurana V, Kopylev L, Cohen LG. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J Neurophysiol 2004;91:2110-2116.
  • 40. Muellbacher W, Ziemann U, Wissel J, et al. Early consolidation in human primary motor cortex. Nature 2002;415:640-644.
  • 41. Robertson EM, Press DZ, Pascual-Leone A. Offline learning and the primary motor cortex. J Neurosci 2005;25:6372-6378.
  • 42. Honda M, Deiber M-P, Ibáñez V, Pascual-Leone A, Zhuang P, Hallett M. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain 1998;121:2159-2173.
  • 43. Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994;263:1287-1289.
  • 44. Shadmehr R. Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci 2004;23:543-568.
  • 45. de Xivry J-JO, Marko MK, Pekny SE, et al. Stimulation of the human motor cortex alters generalization patterns of motor learning. J Neurosci 2011;31:7102-7110.
  • 46. Sainburg RL, Schaefer SY. Interlimb differences in control of movement extent. J Neurophysiol 2004;92:1374-1383.
  • 47. Haaland KY, Prestopnik JL, Knight RT, Lee RR. Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 2004;127:1145-58.
  • 48. Oliveira FT, Diedrichsen J, Verstynen T, Duque J, Ivry RB. Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc Natl Acad Sci U S A. 2010;107:17751-17756.
  • 49. Mutha PK, Sainburg RL, Haaland KY. Left parietal regions are critical for adaptive visuomotor control. J Neurosci 2011;31:6972-6981.
  • 50. Stöckel T, Wang J. Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order. Brain Cogn 2011;77:271-279.
  • 51. Hall JE. Guyton and Hall textbook of medical physiology: Elsevier Health Sciences; 2015.
  • 52. Alexander J, Coats N, Director C, Hugel R, Director SA, Boes V. James W. Kalat. 2007.
  • Thomas JR, Alderson JA, Thomas KT, et al. Is There a General Motor Program for Right Versus Left Hand Throwing in Children. J Biosens Bioelectron S. 2011;1:2.
  • 53. Yadav V, Sainburg R. Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience 2011;196:153-167.
  • 54. Sainburg RL. Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 2002;142:241-258.
  • 55. Schmidt R, Lee T. Motor Learning and performance, 5E with web study guide: from principles to application: Human Kinetics; 2013.
APA TEYMURI KHERAVI M, SABERI KAKHKI A, TAHERI H, GHANAEI CHAMANABAD A, DARAINY M (2017). The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. , 252 - 264.
Chicago TEYMURI KHERAVI Mostafa,SABERI KAKHKI Alireza,TAHERI Hamidreza,GHANAEI CHAMANABAD Ali,DARAINY Mohammad The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. (2017): 252 - 264.
MLA TEYMURI KHERAVI Mostafa,SABERI KAKHKI Alireza,TAHERI Hamidreza,GHANAEI CHAMANABAD Ali,DARAINY Mohammad The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. , 2017, ss.252 - 264.
AMA TEYMURI KHERAVI M,SABERI KAKHKI A,TAHERI H,GHANAEI CHAMANABAD A,DARAINY M The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. . 2017; 252 - 264.
Vancouver TEYMURI KHERAVI M,SABERI KAKHKI A,TAHERI H,GHANAEI CHAMANABAD A,DARAINY M The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. . 2017; 252 - 264.
IEEE TEYMURI KHERAVI M,SABERI KAKHKI A,TAHERI H,GHANAEI CHAMANABAD A,DARAINY M "The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study." , ss.252 - 264, 2017.
ISNAD TEYMURI KHERAVI, Mostafa vd. "The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study". (2017), 252-264.
APA TEYMURI KHERAVI M, SABERI KAKHKI A, TAHERI H, GHANAEI CHAMANABAD A, DARAINY M (2017). The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. Journal of Neurological Sciences (Turkish), 34(3), 252 - 264.
Chicago TEYMURI KHERAVI Mostafa,SABERI KAKHKI Alireza,TAHERI Hamidreza,GHANAEI CHAMANABAD Ali,DARAINY Mohammad The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. Journal of Neurological Sciences (Turkish) 34, no.3 (2017): 252 - 264.
MLA TEYMURI KHERAVI Mostafa,SABERI KAKHKI Alireza,TAHERI Hamidreza,GHANAEI CHAMANABAD Ali,DARAINY Mohammad The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. Journal of Neurological Sciences (Turkish), vol.34, no.3, 2017, ss.252 - 264.
AMA TEYMURI KHERAVI M,SABERI KAKHKI A,TAHERI H,GHANAEI CHAMANABAD A,DARAINY M The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. Journal of Neurological Sciences (Turkish). 2017; 34(3): 252 - 264.
Vancouver TEYMURI KHERAVI M,SABERI KAKHKI A,TAHERI H,GHANAEI CHAMANABAD A,DARAINY M The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study. Journal of Neurological Sciences (Turkish). 2017; 34(3): 252 - 264.
IEEE TEYMURI KHERAVI M,SABERI KAKHKI A,TAHERI H,GHANAEI CHAMANABAD A,DARAINY M "The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study." Journal of Neurological Sciences (Turkish), 34, ss.252 - 264, 2017.
ISNAD TEYMURI KHERAVI, Mostafa vd. "The Effect of Brain Hemisphere Stimulation and How to Specialize Motor Task Programming: A Transcranial Direct Current Stimulation Study". Journal of Neurological Sciences (Turkish) 34/3 (2017), 252-264.