Yıl: 2016 Cilt: 53 Sayı: 2 Sayfa Aralığı: 115 - 119 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri

Öz:
Amaç: Bu çalışmada klinik, elektrofizyolojik bulgular ışığında herediter ataksi olarak değerlendirilen olguların moleküler genetik incelemeleri de dikkate alınarak Freidreich Ataksisi (FA) ve otozomal dominant Spino Serebellar Ataksi (SCA) 1, 2, 3 ve 6 açısından genotipik ve fenotipik yönden irdelenmesi amaçlanmıştır. Yöntem: Çalışmaya Nöroloji kliniğine başvuran, klinik, laboratuar ve elektrofizyolojik bulgular eşliğinde herediter serebellar ataksi olarak tanınan 129 indeks olgu yanı sıra aile taraması sonucu 15 kardeş hasta (toplam144 olgu) alınmış ve genetik analizleri yapılmıştır. Olguların ayrıntılı fizik ve nörolojik muayene, pedigri analizi, elektronörografi, uyarılmış potansiyel çalışmaları, serebral-spinal manyetik rezonans görüntüleme (MR) ve ekokardiyografik incelemeleri yapılmıştır. Hastalardan kan örneği alınarak Freidreich ataksisi yanı sıra SCA 1, 2, 3 ve 6 açısından moleküler genetik çalışmalar yapılmış, verilerin istatistiksel analizinde SPSS (Statistical Package for the Social Sciences Inc; Chicago, IL, ABD) 17,0 paket programı kullanılmıştır. Bulgular: Olguların %50'ye yakını Freidreich ataksisi olarak tanınırken iki olgu SCA 1, iki olgu ise SCA 6 olarak tanınmıştır. Sonuç: Serimizde herediter zeminde gelişen serebellar ataksili olguların %47,2'sini FA'lı hastalar oluşturmuş olup otozomal dominant kalıtılan spinoserebellar ataksilerden SCA1 ve SCA6 birer ailede saptanmıştır. Bu veriler herediter zeminde geliştiğini düşündüğümüz serebellar ataksili bir hasta ile karşı karşıya kaldığımızda olgunun öncelikli olarak FA yönünden değerlendirmemiz gerektiğini göstermektedir.
Anahtar Kelime:

Konular: Nörolojik Bilimler Psikiyatri

Determination of Genotypic and Phenotypic Characteristics of Friedreich’s Ataxia and Autosomal Dominant Spinocerebellar Ataxia Types 1, 2, 3, and 6

Öz:
Introduction: This study aimed to analyze the genotypic characteristics of Friedreich’s ataxia (FA) and autosomal dominant ataxias [such as spinocerebellar ataxia (SCA) types 1, 2, 3, and 6] using molecular and biological methods in hereditary cerebellar ataxia considering both clinical and electrophysiological findings. Methods: The study included 129 indexed cases, who applied to the neurology department and were diagnosed with hereditary cerebellar ataxia through clinical, laboratory, and electrophysiological findings, and 15 sibling patients who were diagnosed through family scanning (144 cases in total); their genetic analyses were also performed. Detailed physical and neurological examinations, pedigree analyses, electroneurography, evoked potentials, cerebral–spinal magnetic resonance imaging, and echocardiographic analyses were performed for all cases. Blood samples were collected from patients, and the genotypic characteristics of autosomal dominant SCA types 1, 2, 3, and 6 were investigated. Statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS Inc; Chicago, IL, USA) 17.0. Results: Almost 50% of patients were defined as FA. Moreover, two SCA1 cases and one SCA6 case were detected. Conclusion: In our study, 47.2% of patients with FA had developed hereditary cerebellar ataxia. Ground and autosomal dominant-linked SCA1 and SCA6 were each detected in one family. These data suggest that patients with cerebellar ataxia of hereditary origin should be primarily examined for FA.
Anahtar Kelime:

Konular: Nörolojik Bilimler Psikiyatri
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Klockgether T. Ataxias. In Goetz C, Textbook of Clinical Neurology. 3rd Edition, New York: Saunders; 2007; Chapter 35,765-780. [CrossRef]
  • 2. Smeets CJ, Verbeek DS. Cerebellar ataxia and functional genomics: Identifying the routes to cerebellar neurodegeneration. Biochim Biophys Acta 2014; 1842:2030-2038. [CrossRef]
  • 3. Saner N, Başak AN. Heterojen bir hastalık grubu: Spinoserebellar ataksiler, genetik yapıları ve moleküler tanıları. Türk Nöroloji Dergisi 2006; 12:185-194.
  • 4. Bird TD. Hereditary Ataxia overview. http://www.ncbi.nlm.nih.gov/books/ NBK1138 Erişim tarihi: 12.09.2014.
  • 5. Klockgether T, Paulson H. Milestones in ataxia. Mov Disord 2011; 14:1134- 1141. [CrossRef]
  • 6. Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolas H, Roig C, Corral J, Campos B, de Jorge L, Morcillo-Suarez C, Navarro A, Forlani S, Durr A, Kulisevsky J, Brice A, Sánchez I, Volpini V, Matilla-Due-as A. New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol 2013; 70:764-771. [CrossRef]
  • 7. Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, Jiang H, Zhang P, Shen L, Guo JF, Li N, Li YR, Lei LF, Zhou J, Du J, Zhou YF, Pan Q, Wang J, Wang J, Li RQ, Tang BS.
  • GM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 2010; 133:3510-3518. [CrossRef]
  • 8. Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu W, Okuda H, Koizumi A. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 2011; 89:121-130. [CrossRef]
  • 9. Jiang H, Zhu HP, Gomez CM. SCA32: an autosomal dominant cerebellar ataxia with azoospermia maps to chromosome 7q32-q33. Mov Disord 2010; 25:129.
  • 10. Boonkongchuen P, Pongpakdee S, Jindahra P, Papsing C, Peerapatmongkol P, Wetchaphanphesat S, Paiboonpol S, Dejthevaporn C, Tanprawate S, Nudsasarn A, Jariengprasert C, Muntham D, Ingsathit A, Pulkes T. Clinical analysis of adult-onset spinocerebellar ataxias in Thailand. BMC Neurol 2014; 14:75. [CrossRef]
  • 11. Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2011; 6:33. [CrossRef]
  • 12. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005; 4:2-6. [CrossRef]
  • 13. Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2014; 23:441- 458. [CrossRef]
  • 14. Bradley WG, Daraff RB, Fenichel GM, Jankoviz J. (Eds). Neurology in Clinical Practice. Chapter 75. 5th ed. Philadelphia: Butterworth-Heinemann 2008; 76: 2123-2145.
  • 15. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Ca-izares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271: 1423-1427. [CrossRef]
  • 16. Christodoulou K, Deymeer F, Serdaroğlu P, Ozdemir C, Poda M, Georgiou DM, Ioannou P, Tsingis M, Zamba E, Middleton LT. Mapping of the second Friedreich’s ataxia (FA2) locus to chromosome 9p23-p11: evidence for further locus heterogeneity. Neurogenetics 2001; 3:127-132. [CrossRef]
  • 17. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet 2000; 37:1-8. [CrossRef]
  • 18. Alper G, Narayanan V. Friedreich’s ataxia. Pediatr Neurol 2003; 28:335-341. [CrossRef]
  • 19. Gucev Z, Tasic V, Jancevska A, Jordanova NP, Koceva S, Kuturec M, Sabolic V. Friedreich’s ataxia (FA) associated with diabetes mellitus type 1 and hypertrophic cardiomyopathy: analysis of a FA family. Med Arh 2009; 63:110-111.
  • 20. Filla A, De Michele G, Marconi R, Bucci L, Carillo C, Castellano AE, Iorio L, Kniahynicki C, Rossi F, Campanella G. Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J Neurol 1992; 239:351-353. [CrossRef]
  • 21. Salehi MH, Houshmand M, Aryani O, Kamalidehghan B, Khalili E. Molecular and clinical investigation of Iranian patients with Friedreich ataxia. Iran Biomed J 2014; 18:28-33.
  • 22. Yilmaz MB, Koç AF, Kasap H, Güzel AI, Sarica Y, Süleymanova D. GAA repeat polymorphism in Turkish Friedreich’s ataxia patients. Int J Neurosci 2006; 116:565-574. [CrossRef]
  • 23. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215. [CrossRef]
  • 24. Fujita R, Agid Y, Trouillas P, Seck A, Tommasi-Davenas C, Driesel AJ, Olek K, Grzeschik KH, Nakamura Y, Mandel JL, Hanauer A. Confirmation of linkage of Freidreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics 1989; 4:110-111. [CrossRef]
  • 25. Koç F, Sarıca Y, Süleymanova Karahan D, Yılmaz B, Kasap H, Demirhan O. Friedreich Ataxia: Clinical and Cytogenetic Findings. Journal of Neurological Sciences 2004; 21:143.
  • 26. Koenig M, Mandel JL. Deciphering the cause of Freidreich ataxia. Current Opinion in Neurobiology 1998; 7:689-694. [CrossRef]
  • 27. Harding AE, Zilkha KJ. ‘Pseudo-dominant’ inheritance in Freidreich ‘s ataxia. J Med Genet 1981; 18:285-287. [CrossRef]
  • 28. Ackroyd RS, Finnegan JA, Green SH. Freidreich’s ataxia. A clinical review with neurophysological and echocardiographic findings. Arch Dis Child 1984; 59:217-221. [CrossRef]
  • 29. Koç, F, Akpınar O, Yerdelen D, Demir M, Sarıca Y, Kanadaşı M. The evaluation of left ventricle systolic and diastolic functions in patients with Freidreich Ataxia: A pulse tissue doppler study. Int Heart J 2005; 46:443-452. [CrossRef]
  • 30. Isnard R, Kalotka H, Dürr A, Cossée M, Schmitt M, Pousset F, Thomas D, Brice A, Koenig M, Komajda M. Correlation between left ventricular hypertrophy and GAA trinucleotid repeat length in Freidreich’s ataxia. Circulaton 1997; 95:2247-2249. [CrossRef]
  • 31. Milbrandt TA, Kunes JR, Karol LA. Friedreich’s ataxia and scoliosis : the experience at two institutions. J. Pediatr.Orthop 2008; 28:234-238. [CrossRef]
  • 32. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335:1169-1175. [CrossRef]
  • 33. Harding AE. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysisof early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104:589-620. [CrossRef]
  • 34. Geoffroy G, Barbeau A, Breton G, Lemieux B, Aube M, Leger C, Bouchard JP. Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 1976; 3:279-286.
  • 35. McCabe DJ, Ryan F, Moore DP, McQuaid S, King MD, Kelly A, Daly K, Barton DE, Murphy RP. Typical Friedreich’s ataxia without GAA expansions and GAA expansion without typical Friedreich’s ataxia. J Neurol 2000; 247:346-355. [CrossRef]
  • 36. Vedolin L, Gonzalez G, Souza CF, Lourenço C, Barkovich AJ. Inherited cerebellar ataxia in childhood: a pattern-recognition approach using brain MRI. AJNR Am J Neuroradiol 2013; 34:925-934. [CrossRef]
  • 37. Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Storey E, Delatycki MB, Egan GF. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum 2011; 10:81-87. [CrossRef]
  • 38. Kimura S, Saito Y, Kaneko K, Nezu A. A case of Friedreich’s ataxia having no abnormal gene. No To Hattatsu 2002; 34:343-346.
  • 39. Wang J, Xu Q, Lei L, Shen L, Jiang H, Li X, Zhou Y, Yi J, Zhou J, Yan X, Pan Q, Xia K, Tang B. Studies on the CAG /CTG repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese Han. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2009; 26:620-625.
  • 40. Jin DK, Oh MR, Song SM, Koh SW, Lee M, Kim GM, Lee WY, Chung CS, Lee KH, Im JH, Lee MJ, Kim JW, Lee MS. Frequency of spinocerebellar ataxia types 1,2,3,6,7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 1999; 246:207-210. [CrossRef]
  • 41. Kraft S, Furtado S, Ranawaya R, Parboosingh J, Bleoo S, McElligott K, Bridge P, Spacey S, Das S, Suchowersky O. Adult onset spinocerebellar ataxia in Canadian movement disorders clinic . Can J Neurol Sci 2005; 32:450-458. [CrossRef]
  • 42. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4:221-226. [CrossRef]
  • 43. Orr HT, Zoghbi HY. SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum Mol Genet 2001; 10:2307-2311. [CrossRef]
  • 44. Subramony SH, Ashizawa Tetsuo. Spinocerebellar Ataxia Type 1.
  • 45. Shcöls L, Szymanski S, Peter S, Przuntek H, Epplen JT, Hardt C, Riess O. Genetic background of apparently idiopatic sporadic cerebellar ataxia. Hum Genet 2000; 107:132-137. [CrossRef]
  • 46. Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen JT, Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry 1998; 64:67-73. [CrossRef]
  • 47. Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ, Knoers NV, van Amstel HK, Kremer HP. Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol 2001; 58:1839-1844. [CrossRef]
  • 48. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH. Spinocerebellarataxiatype 6: gaze-evokedandverticalnystagmus, Purkinjecelldegeneration, andvariableage of onset. Ann Neurol 1997; 42:933-950. [CrossRef]
APA BOZ P, Koc F, KOCATÜRK SEL S, Guzel A, Kasap H (2016). Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. , 115 - 119.
Chicago BOZ PINAR BENGİ,Koc Filiz,KOCATÜRK SEL SABRIYE,Guzel Ali İrfan,Kasap Halil Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. (2016): 115 - 119.
MLA BOZ PINAR BENGİ,Koc Filiz,KOCATÜRK SEL SABRIYE,Guzel Ali İrfan,Kasap Halil Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. , 2016, ss.115 - 119.
AMA BOZ P,Koc F,KOCATÜRK SEL S,Guzel A,Kasap H Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. . 2016; 115 - 119.
Vancouver BOZ P,Koc F,KOCATÜRK SEL S,Guzel A,Kasap H Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. . 2016; 115 - 119.
IEEE BOZ P,Koc F,KOCATÜRK SEL S,Guzel A,Kasap H "Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri." , ss.115 - 119, 2016.
ISNAD BOZ, PINAR BENGİ vd. "Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri". (2016), 115-119.
APA BOZ P, Koc F, KOCATÜRK SEL S, Guzel A, Kasap H (2016). Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. Nöropsikiyatri Arşivi, 53(2), 115 - 119.
Chicago BOZ PINAR BENGİ,Koc Filiz,KOCATÜRK SEL SABRIYE,Guzel Ali İrfan,Kasap Halil Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. Nöropsikiyatri Arşivi 53, no.2 (2016): 115 - 119.
MLA BOZ PINAR BENGİ,Koc Filiz,KOCATÜRK SEL SABRIYE,Guzel Ali İrfan,Kasap Halil Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. Nöropsikiyatri Arşivi, vol.53, no.2, 2016, ss.115 - 119.
AMA BOZ P,Koc F,KOCATÜRK SEL S,Guzel A,Kasap H Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. Nöropsikiyatri Arşivi. 2016; 53(2): 115 - 119.
Vancouver BOZ P,Koc F,KOCATÜRK SEL S,Guzel A,Kasap H Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri. Nöropsikiyatri Arşivi. 2016; 53(2): 115 - 119.
IEEE BOZ P,Koc F,KOCATÜRK SEL S,Guzel A,Kasap H "Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri." Nöropsikiyatri Arşivi, 53, ss.115 - 119, 2016.
ISNAD BOZ, PINAR BENGİ vd. "Freidreich Ataksisi ve Spinoserebellar Ataksi Tip 1, 2, 3 ve 6’nın Genotipik ve Fenotipik Özellikleri". Nöropsikiyatri Arşivi 53/2 (2016), 115-119.