Yıl: 2017 Cilt: 16 Sayı: 3 Sayfa Aralığı: 1101 - 1119 Metin Dili: İngilizce DOI: 10.17051/ilkonline.2017.330245 İndeks Tarihi: 29-07-2022

Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem

Öz:
The main purpose of this study is to see how students develop models and how they learn someparticular scientific concepts with interdisciplinary modeling problem. For this purpose, researchers havedeveloped “Energy Conservation Problem” which is an interdisciplinary modelling problem in collaborationwith Science teacher. The problem was applied to 7th grade students in groups of 3-4 in an Eastern city ofTurkey. In the process of interdisciplinary problem solving, students learned some terms about Sciencediscipline and after interrelating these concepts, discussed which factors to include in their prospective modelsand how to quantify them. The models of the students were different from each other because of students’ firstexposure to such a process, different way of thoughts in the groups and inherent complexity of the modellingproblems.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları

Disiplinler Arası Modelleme Problemi Yoluyla Kavram Öğretimi: Enerji Tasarrufu Problemi

Öz:
Bu çalışmanın temel amacı öğrencilerin model geliştirme süreçlerini izlemek ve disiplinler arası bir modelleme problemi yoluyla bazı belirli fen ve matematik terimlerini nasıl öğrendiklerini görmektir. Bu amaçla, araştırmacılar Fen öğretmeni ile birlikte çalışarak disiplinler arası bir modelleme problemi olan "Enerji Tasarrufu Problemi" geliştirdiler. Geliştirilen bu problem, Türkiye'nin Doğu Anadolu Bölgesinde bir il merkezinde bulunan bir okulda 3-4 kişilik gruplar halinde 7. sınıf öğrencilerine uygulanmıştır. Disiplinler arası problem çözme sürecinde, öğrenciler fenle ilgili bazı kavramları öğrendiler ve bu kavramları birbirleriyle ilişkilendirdikten sonra gelecekteki modellerinde hangi faktörleri dahil edeceklerini ve nasıl ölçeceklerini tartıştılar. Öğrencilerin modellerinin birbirlerinden farklı olmasında öğrencilerin ilk defa böyle bir problemle karşılaşmış olmaları, gruplar içindeki farklı düşünme biçimleri ve modelleme problemlerinin doğası gereği karmaşık olması etkili olmuştur.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bukova-Güzel, E. (2011). An examination of pre-service mathematics teachers’ approaches to construct and solve mathematical modelling problems. Teaching Mathematics and Its Applications, 30(1), 19-36.
  • Blum, W., Galbraith, P.L., Henn, H.W., & Niss, M. (Eds.) (2006). Modelling and applications in mathematics education: The 14th ICMI Study (New ICMI Study Series). New York: Springer.Cobb, P., & Whitenack, J. W. 1996. A method for conducting longitudinal analyses of classroom videorecordings and transcripts. Educational studies in mathematics, 30(3), 213-228.
  • Chamberlin, S. A. (2000). Summer sports camp. Unpublished manuscript.
  • Chamberlin, S. A. (2005). Secondary mathematics for high-ability students. In F. Dixon & S. Moon (Eds.), The handbook of secondary gifted education (pp. 145– 163). Waco, TX: Prufrock Press.
  • Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics (CCSSM). Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
  • Cunningham, A. E., & Stanovich, K. E. (1997). Early reading acquisition and its relation to reading experience and ability 10 years later. Developmental psychology, 33(6), 934-945.
  • Dede, A. T., & Yilmaz, S. (2016). Cognıtıve modellıng skılls from novıcıate to expertness. European Journal of Education Studies. 10.5281/zenodo.167309.
  • Dede, A. T., & Güzel, E. B. (2014). Model Oluşturma Etkinlikleri: Kuramsal Yapısı ve bir Örneği. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 33(1), 95-112.
  • Delice, A., Kertil, M. 2014. Investigating the representational fluency of pre-service mathematics teachers in a modeling process. International journal of science and mathematics education. doi: 10.1007/s10763- 013-9466-0.
  • Department For Education [DFE]. Mathematics in the national curriculum. London, UK: DFE Welch Office.
  • Doerr, H. M, & English, L. D. (2001). A modelling perspective on students’ learning through data analysis. In M. van den Heuvel Panhuizen (Ed.), Proceedings of the 25th annual conference of the international group for the psychology of mathematics education (pp. 361–368). Utrecht University, Utrecht, Netherlands.
  • Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for research in mathematics education, 34 (2), 110-136.
  • English, L. D. (2003). Reconciling theory, research, and practice: A models and modelling perspective. Educational Studies in Mathematics, 54(2-3), 225-248.
  • English, L. D. (2006). Mathematical modeling in the primary school: Children's construction of a consumer guide. Educational Studies in Mathematics, 63(3), 303-323.
  • English, L. D. (2007). Interdisciplinary modelling in the primary mathematics curriculum. In Watson, Jane & Beswick, Kim (Eds.) Mathematics: Essential research, essential practice, Mathematics Education Research Group of Australia (MERGA), Hobart, pp. 275-284.
  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM, 41(1-2), 161-181.
  • English, L. D., Hudson, P., & Dawes, L. (2013). Engineering-based problem solving in the middle school: Design and construction with simple machines. Journal of Pre-College Engineering Education Research (J-PEER), 3(2), 5.
  • English, L., & Sriraman, B. (2010). Problem solving for the 21st century. In Theories of mathematics education (pp. 263-290). New York: Springer
  • Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacaci, C., & Baş, S. (2014). Mathematical modeling in mathematics education: Basic concepts and approaches. Educational Sciences: Theory & Practice, 14(4), 1621-1627.
  • Eraslan, Y. (2013). Temel Eğitimden Orta Öğretime Geçiş. http://www.yansieraslan.net/#!mby096/csct
  • Friedman, J. I., Carpenter, D., Lu, J., Fan, J., Tang, C. Y., White, L., & Harvey, P. D. (2008). A pilot study of adjunctive atomoxetine treatment to second-generation antipsychotics for cognitive impairment in schizophrenia. Journal of clinical psychopharmacology, 28(1), 59-63.
  • Galbraith, P. L., & Clatworthy, N. J. (1990). Beyond standard models meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137-163.
  • Galbraith, P. L., Henn, H. W., & Niss, M. (2007). Modelling and applications in mathematics education. New York: Springer.
  • Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles, A. C., & Kater, S. B. (1999). ATP released from astrocytes mediates glial calcium waves. The Journal of neuroscience, 19(2), 520- 528.
  • Hamilton, E., Lesh, R., Lester F., Brilleslyper M. (2008). Model-Eliciting Activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education 1, 2, 1–25.
  • Hıdıroğlu, Ç. N., Dede, A. T., Kula S., & Güzel, E. B. (2014). Examining students’ solutions regarding the comet problem in the frame of mathematical modeling process. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(31), 1-17.
  • Lehrer, R., & Schauble L. (2007). A developmental approach for supporting the epistemology of modeling. In Modelling and Applications in Mathematics Education: The 14th ICMI Study, edited by Werner Blum, Peter L. Galbraith, Hans-Wolfgang Henn, and Mogens Niss, pp. 153–60. New York: Springer.
  • Lesh, R., & Doerr, H. M. (Eds.). (2003). Foundations of a models and modeling perspectives on mathematic problem solving, learning and teaching. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematic problem solving, learning and teaching (pp. 35–58). Mahwah: Lawrence Erlbaum.
  • Lesh, R., & Sriraman, B. (2005 a). John Dewey revisited pragmatisim and the models-modeling perspective on mathematical learning. In A. Beckmann, C. Michelsen, & B. Sriraman (Eds.). Proceedings of the 1st international symposium of mathematics and its connections to the arts and sciences (pp. 7–31). The University of Education, Schwo¨bisch Gmund, Germany
  • Lesh, R., & Sriraman, B. (2005 b). John Dewey Revisited-Pragmatism and the models-modeling perspective on mathematical learning. In Proceedings of the 1st International Symposium on Mathematics and its Connections to the Arts and Sciences (pp. 32-51).
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), The handbook of research design in mathematics and science education (pp. 591 – 646). Mahwah, NJ: Erlbaum.
  • Lesh, R. & Yoon C. (2007). What is distinctive in (our views about) models and modelling perspectives on mathematics problem solving, learning, and teaching? In Modelling and Applications in Mathematics Education: The 14th ICMI Study, edited by Werner Blum, Peter L. Galbraith, HansWolfgang Henn, and Mogens Niss, pp. 161–70. New York: Springer.
  • Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. Second handbook of research on mathematics teaching and learning, 2, 763-804.
  • Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003a). Model development sequences. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematic problem solving, learning and teaching (pp. 35–58). Mahwah: Lawrence Erlbaum.
  • Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond constructivism. Mathematical thinking and learning, 5(2-3), 211-233.
  • Maaβ, K. (2006). What are modelling competences? ZDM, Mathematics Education, 38 (2), 113-142.
  • MEB (2013). Temel Eğitimden Orta Öğretime Geçiş Sistemi Kılavuzu. Ankara: Millî Eğitim Bakanlığı.
  • Murphy, E. L. (1993). Interdisciplinary curriculum influences on student achievement, teacher and administrator attitudes, and teacher efficacy (Doctoral dissertation). Arizona State University, Tucson.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Romberg, T. A., Carpenter, T. P., & Kwako, J. (2005). Standards based reform and teaching for understanding. In T. A. Romberg, T. P. Carpenter & F. Dremock (Eds.), Understanding mathematics and science matters, 3-26, New York: Routledge.
  • Sabelli, N. H. (2006). Complexity, technology, science, and education. The Journal of the Learning Sciences, 15(1), 5-9.
  • Sahin, N., & Eraslan, A. (2016). Modeling processes of primary school students: The crime problem. Educatıon and Scıence, 41(183), 47-67.
  • Sriraman, B., & Steinthorsdottir (2007). Research into practice: Implications of research on mathematics gifted education for the secondary curriculum. In C. Callahan & J. Plucker (Eds.), Critical issues and practices in gifted education: What the research says (pp. 395-408). Waco, Texas: Prufrock Press.
  • Steen, L., Turner R., & Burkhardt H. (2007). Developing Mathematical literacy. In Modelling and Applications in Mathematics Education: The 14th ICMI Study, edited by Werner Blum, Peter L.
  • Galbraith, Hans-Wolfgang Henn, and Mogens Niss, pp. 285–94. New York: Springer
  • Steffe, L. P., & Thompson, P. W. 2000. Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly, & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267–307). Mahwah, NJ: Erlbaum.
  • Strauss, A., & Corbin, J. 1990. Basics of qualitative research (Vol. 15), Newbury Park, CA: Sage. Talim ve Terbiye Kurulu Başkanlığı. (2011). Ortaöğretim matematik (9, 10, 11 ve 12. sınıflar) dersi öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı. (2013). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: T.C. Milli Eğitim Bakanlığı. Yıldız, M. (2013). A study on the reading motivation of elementary 3rd, 4th, and 5th grade students. Education and Science, 38(168), 260-271.
  • Yıldız, M. (2013). Okuma Motivasyonu, Akıcı Okuma Ve Okuduğunu Anlamanın Beşinci Sınıf Öğrencilerinin Akademik Başarılarındaki Rolü. Turkish Studies, 8(4), 1461-1478.
  • Yoon, C., Tommy D. & Michael O. J. T. (2010). How High is the Tramping Track? Mathematising and applying in a calculus model-eliciting activity. Mathematics Education Research Journal 22, 2, 141–57.
  • Zawojewski, J. S., Lesh, R., and English, L. D. (2003). A models and modelling perspective on the role of small group learning. In R. A. Lesh and H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 337-358). Mahwah, NJ: Lawrence Erlbaum
APA GÜDER Y, GÜRBÜZ R (2017). Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. , 1101 - 1119. 10.17051/ilkonline.2017.330245
Chicago GÜDER Yunus,GÜRBÜZ Ramazan Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. (2017): 1101 - 1119. 10.17051/ilkonline.2017.330245
MLA GÜDER Yunus,GÜRBÜZ Ramazan Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. , 2017, ss.1101 - 1119. 10.17051/ilkonline.2017.330245
AMA GÜDER Y,GÜRBÜZ R Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. . 2017; 1101 - 1119. 10.17051/ilkonline.2017.330245
Vancouver GÜDER Y,GÜRBÜZ R Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. . 2017; 1101 - 1119. 10.17051/ilkonline.2017.330245
IEEE GÜDER Y,GÜRBÜZ R "Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem." , ss.1101 - 1119, 2017. 10.17051/ilkonline.2017.330245
ISNAD GÜDER, Yunus - GÜRBÜZ, Ramazan. "Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem". (2017), 1101-1119. https://doi.org/10.17051/ilkonline.2017.330245
APA GÜDER Y, GÜRBÜZ R (2017). Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. İlköğretim Online (elektronik), 16(3), 1101 - 1119. 10.17051/ilkonline.2017.330245
Chicago GÜDER Yunus,GÜRBÜZ Ramazan Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. İlköğretim Online (elektronik) 16, no.3 (2017): 1101 - 1119. 10.17051/ilkonline.2017.330245
MLA GÜDER Yunus,GÜRBÜZ Ramazan Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. İlköğretim Online (elektronik), vol.16, no.3, 2017, ss.1101 - 1119. 10.17051/ilkonline.2017.330245
AMA GÜDER Y,GÜRBÜZ R Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. İlköğretim Online (elektronik). 2017; 16(3): 1101 - 1119. 10.17051/ilkonline.2017.330245
Vancouver GÜDER Y,GÜRBÜZ R Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem. İlköğretim Online (elektronik). 2017; 16(3): 1101 - 1119. 10.17051/ilkonline.2017.330245
IEEE GÜDER Y,GÜRBÜZ R "Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem." İlköğretim Online (elektronik), 16, ss.1101 - 1119, 2017. 10.17051/ilkonline.2017.330245
ISNAD GÜDER, Yunus - GÜRBÜZ, Ramazan. "Teaching Concepts through Interdisciplinary Modeling Problem: Energy Conservation Problem". İlköğretim Online (elektronik) 16/3 (2017), 1101-1119. https://doi.org/10.17051/ilkonline.2017.330245