Yıl: 2018 Cilt: 57 Sayı: 1 Sayfa Aralığı: 36 - 45 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi

Öz:
Amaç: Palbociclib (PD-0332991) siklin bağımlı kinaz 4/6 kompleksi için bir inhibitördür ve luminal ER+ memekanserlerinde daha fazla aktivite sergilemektedir. Ancak, meme kanseri kök hücrelerinin (MKKH) PD-0332991uygulamasına olan hassasiyeti ve hücre döngüsü düzenleyici genleri üzerine PD-0332991'in etkisi MKKH'leri içinaçıklığa kavuşmamıştır. Bu çalışma, MKKH'lerinin PD-0332991 uygulamasına olan yanıtın belirlenmesiniamaçlamaktadır.Gereç ve Yöntem: Meme kanseri hücre hatları üzerinde deneysel bir in vitro çalışma tasarlanmıştır. Buçalışmada, MCF-7 ve MKKH hücre hatları kullanıldı. Suda çözünür tetrazolyum tuzu-1 (WST-1) testi sitotoksisitedeneyi için kullanıldı. Hücre döngüsü dağılımı ve apoptosis, 48. saat IC50 değerlerine göre flow sitometri ileincelendi. CDKN1A, CHEK1, CDKN2A, CDC25A ve CCND1 genlerinin ifade profillerinin belirlenmesinde RealTimePCR kullanıldıBulgular: Her iki hücre hattında, PD-0332991 hücre proliferasyonunu azalttı. Her iki hücre hattı için G0/G1tutuklanması belirlendi. PD-0332991'in apoptotik etkisi MCF-7 ve MKKH hücrelerinde bulunmadı. MCF-7hücrelerinde, CDKN1A, CDKN2A ve CCND1 ifade düzeyleri sırasıyla 3,11; 3,21 ve 1,05 kat arttı. CHEK1 ve CDC25Aifade düzeyleri sırasıyla 4,75 ve 3,73 kat azaldı. MKKH'lerinde CDKN1A, CHEK1, CDKN2A ve CCND1 ifade düzelerisırasıyla 1,15; 2,01; 1,32 ve 1,68 kat azaldı. MKKH'lerinde, CDC25A geni ifadesi bulunmadı.Sonuç: Bu çalışmada, MKKH ve meme kanseri hücreleri arasında PD-0332991'in hücre döngüsü düzenleyici genler için farklı ifade profillerine neden olduğu gözlenmiştir.
Anahtar Kelime:

Konular: Biyoloji Hücre ve Doku Mühendisliği Hematoloji Genetik ve Kalıtım Hücre Biyolojisi

Influence of PD-0332991 treatment on cell cycle regulatory genes in breast cancer stem cells

Öz:
Aim: Palbociclib (PD-0332991) is an inhibitor for cyclin-dependent kinase 4/6 complex and exhibits more activity in luminal ER+ breast cancer. However, sensitivity of breast cancer stem cells (BCSCs) to PD-0332991 treatment and expression patterns of cell cycle regulatory genes after PD-0332991 treatment in BCSCs are still unclear. This study aims to determine response of BCSCs to PD-0332991 treatment. Materials and Methods: An experimental in vitro study was designed on breast cancer cell lines. MCF-7 and BCSCs cell lines were used in this study. Water soluble tetrazolium salt-1 (WST-1) test was used for the cytotoxicity assay. Cell cycle distribution pattern and apoptosis were examined with flow cytometry according to IC50 values at 48th h. Real-Time PCR was used to detect expression profiles of CDKN1A, CHEK1, CDKN2A, CDC25A, and CCND1 genes. Results: PD-0332991 decreased cell proliferation in both cell lines. G0/G1 arrest was detected for both cell lines. There was no apoptotic effect of PD-0332991 on MCF-7 cells and BCSCs. In MCF-7 cells, expression levels of CDKN1A, CDKN2A, and CCND1 genes were increased as 3.11, 3.21, and 1.05 folds, respectively. Expression levels of CHEK1 and CDC25A genes were decreased as 4.75 and 3.73 folds, respectively. In BCSCs, expression levels of CDKN1A, CHEK1, CDKN2A, and CCND1 were decreased as 1.15, 2.01, 1.32, and 1.68 folds, respectively. No expression of CDC25A gene was found in BCSCs group. Conclusion: In this study, it was observed that PD-0332991 leads to different expression profiles for cell cycle regulatory genes between BCSCs and breast cancer cells.
Anahtar Kelime:

Konular: Biyoloji Hücre ve Doku Mühendisliği Hematoloji Genetik ve Kalıtım Hücre Biyolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65(1):5-29.
  • 2. Dukelow T, Kishan D, Khasraw M, Murphy CG. CDK4/6 inhibitors in breast cancer. Anti-cancer drugs 2015;26(8):797-806.
  • 3. Tamura K. Development of cell-cycle checkpoint therapy for solid tumors. Jpn J Clin Oncol 2015;45(12):1097-102.
  • 4. Dhillon S. Palbociclib: first global approval. Drugs 2015;75(5):543-51.
  • 5. Rocca A, Farolfi A, Bravaccini S, Schirone A, Amadori D. Palbociclib (PD 0332991) : targeting the cell cycle machinery in breast cancer. Expert Opin Pharmacother 2014;15(3):407-20.
  • 6. Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004;3(11):1427-38.
  • 7. Toogood PL, Harvey PJ, Repine JT, et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 2005;48(7):2388-406.
  • 8. Beaver JA, Amiri-Kordestani L, Charlab R, et al. FDA Approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 2015;21(21):4760-66.
  • 9. O'Sullivan CC. Overcoming endocrine resistance in hormone-receptor positive advanced breast cancer-the emerging role of CDK4/6 inhibitors. Int J Cancer Clin Res 2015;2(4):029.
  • 10. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res 2016;18(1):17.
  • 11. Finn RS, Dering J, Conklin D, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 2009;11(5):R77.
  • 12. Paternot S, Colleoni B, Bisteau X, Roger PP. The CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes activated cyclin D3-CDK4/6 complexes. Cell Cycle 2014;13(18):2879-88.
  • 13. Dawood S, Austin L, Cristofanilli M. Cancer stem cells: Implications for cancer therapy. Oncology 2014;28(12):1101-07.
  • 14. Bensimon J, Altmeyer-Morel S, Benjelloun H, Chevillard S, Lebeau J. CD24(-/low) stem-like breast cancer marker defines the radiation-resistant cells involved in memorization and transmission of radiation-induced genomic instability. Oncogene 2013;32(2):251-8.
  • 15. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008;10(2):R25.
  • 16. Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res 2006;8(5):R59.
  • 17. Fillmore C, Kuperwasser C. Human breast cancer stem cell markers CD44 and CD24: Enriching for cells with functional properties in mice or in man? Breast Cancer Res 2007;9(3):303.
  • 18. Arima Y, Hayashi N, Hayashi H, et al. Loss of p16 expression is associated with the stem cell characteristics of surface markers and therapeutic resistance in estrogen receptor-negative breast cancer. Int J Cancer 2012;130(11):2568-79.
  • 19. Murat Dogan S, Pinar Ercetin A, Altun Z, Dursun D, Aktas S. Gene expression characteristics of breast cancer stem cells. J BUON 2015; 20(5):1304-13.
  • 20. Han J, Zhang F, Yu M, et al. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 2012;321(1):80-8.
  • 21. Cook JA, Mitchell JB. Viability measurements in mammalian cell systems. Anal Biochem 1989; 179(1):1-7.
  • 22. Ishiyama M, Sasamoto K, Shiga M, et al. Novel disulfonated tetrazolium salt that can be reduced to a water-soluble formazan and its application to the assay of lactate dehydrogenase. Analyst 1995;120(1):113-6.
  • 23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method. Methods 2001;25(4):402-8.
  • 24. Robinson TJ, Liu JC, Vizeacoumar F, et al. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PloS one 2013;8(11):e78641.
  • 25. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015;14(2):130-46.
  • 26. Johnson J, Thijssen B, McDermott U, Garnett M, Wessels L, Bernards R. Targeting the RB-E2F pathway in breast cancer. Oncogene 2016; 35(37):4829-35.
  • 27. Lim S, Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 2013;140(15):3079-93.
  • 28. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets?. Nat Rev Cancer 2007;7(7):495-507.
  • 29. Neganova I, Lako M. G1 to S phase cell cycle transition in somatic and embryonic stem cells. J Anat 2008; 213(1): 30-44.
  • 30. Donjerkovic D, Scott D W. Regulation of the G1 phase of the mammalian cell cycle. Cell Research 2000;10(1):1-16.
  • 31. Blomberg I, Hoffmann I. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol 1999;19(9):6183-94.
  • 32. Chen MS, Ryan CE, Piwnica-Worms H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 2003;23(21):7488-97.
  • 33. Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS letters 2001;490(3):117-22.
  • 34. Semizarov D, Kroeger P, Fesik S. siRNA-mediated gene silencing: A global genome view. Nucleic Acids Res 2004;32(13):3836-45.
  • 35. Jinno S, Suto K, Nagata A, et al. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J 1994;13(7):1549-56.
  • 36. Capparelli C, Chiavarina B, Whitaker-Menezes D, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell cycle 2012;11(19):3599-610.
  • 37. Blagosklonny MV. Geroconversion: Irreversibl step to cellular senescence. Cell Cycle 2014;13(23):3628-35.
  • 38. Lamb R, Lehn S, Rogerson L, Clarke RB, Landberg G. Cell cycle regulators cyclin D1 and CDK4/6 have estrogen receptordependent divergent functions in breast cancer migration and stem cell-like activity. Cell Cycle 2013;12(15):2384-94.
  • 39. Li H, Collado M, Villasante A, et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 2009;460(7259):1136-39.
  • 40. Hong H, Takahashi K, Ichisaka T, et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009;460(7259):1132-35.
  • 41. Nishi M, Akutsu H, Kudoh A, et al. Induced cancer stem-like cells as a model for biological screening and discovery of agentstargeting phenotypic traits of cancer stem cell. Oncotarget 2014;5(18):8665-80.
APA ÇAĞLAR H, YILMAZ SÜSLÜER S, Gunduz C, Haydaroğlu A (2018). Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. , 36 - 45.
Chicago ÇAĞLAR Hasan Onur,YILMAZ SÜSLÜER SUNDE,Gunduz Cumhur,Haydaroğlu Ayfer Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. (2018): 36 - 45.
MLA ÇAĞLAR Hasan Onur,YILMAZ SÜSLÜER SUNDE,Gunduz Cumhur,Haydaroğlu Ayfer Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. , 2018, ss.36 - 45.
AMA ÇAĞLAR H,YILMAZ SÜSLÜER S,Gunduz C,Haydaroğlu A Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. . 2018; 36 - 45.
Vancouver ÇAĞLAR H,YILMAZ SÜSLÜER S,Gunduz C,Haydaroğlu A Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. . 2018; 36 - 45.
IEEE ÇAĞLAR H,YILMAZ SÜSLÜER S,Gunduz C,Haydaroğlu A "Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi." , ss.36 - 45, 2018.
ISNAD ÇAĞLAR, Hasan Onur vd. "Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi". (2018), 36-45.
APA ÇAĞLAR H, YILMAZ SÜSLÜER S, Gunduz C, Haydaroğlu A (2018). Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. Ege Tıp Dergisi, 57(1), 36 - 45.
Chicago ÇAĞLAR Hasan Onur,YILMAZ SÜSLÜER SUNDE,Gunduz Cumhur,Haydaroğlu Ayfer Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. Ege Tıp Dergisi 57, no.1 (2018): 36 - 45.
MLA ÇAĞLAR Hasan Onur,YILMAZ SÜSLÜER SUNDE,Gunduz Cumhur,Haydaroğlu Ayfer Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. Ege Tıp Dergisi, vol.57, no.1, 2018, ss.36 - 45.
AMA ÇAĞLAR H,YILMAZ SÜSLÜER S,Gunduz C,Haydaroğlu A Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. Ege Tıp Dergisi. 2018; 57(1): 36 - 45.
Vancouver ÇAĞLAR H,YILMAZ SÜSLÜER S,Gunduz C,Haydaroğlu A Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. Ege Tıp Dergisi. 2018; 57(1): 36 - 45.
IEEE ÇAĞLAR H,YILMAZ SÜSLÜER S,Gunduz C,Haydaroğlu A "Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi." Ege Tıp Dergisi, 57, ss.36 - 45, 2018.
ISNAD ÇAĞLAR, Hasan Onur vd. "Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi". Ege Tıp Dergisi 57/1 (2018), 36-45.