Yıl: 2015 Cilt: 39 Sayı: 2 Sayfa Aralığı: 59 - 90 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi)

Öz:
Bilgisayar destekli haritalama teknolojileri ve bunların geliştirilmesinde kullanılan yöntemlerde meydana gelen gelişmeler, daha yüksek performansa sahip heyelan duyarlılık haritalarının üretilmesini sağlamıştır. Bu çalışmada, bu yöntemlerden biri olan AHP'nin (Analitik Hiyerarşi Süreci) heyelan duyarlılık haritalarının üretilmesinde kullanımına ilişkin ayrıntılı bir literatür derlemesi yapılmış, ayrıca AHP ile Sinop ve çevresinin heyelan duyarlılık değerlendirilmesi gerçekleştirilmiştir. Heyelan duyarlılığının değerlendirilmesinde bakı, litoloji, arazi kullanım sınıfı, yamaç eğriselliği, eğim, yükseklik, anayola, akarsuya ve yapısal unsurlara yakınlık, çalışma sahasında heyelanları kontrol eden faktörler olarak dikkate alınmıştır. Kullanılan faktörler ağırlık değerlerine göre grid haritalarına dönüştürülmüş ve karşılaştırma matrisindeki değerlerin değişik şekillerde ele alınması ile çeşitli heyelan duyarlılık haritaları üretilmiştir. Analiz sonuçları, heyelanları temelde kontrol eden faktörlerin anayola uzaklık, bakı ve litoloji olduğunu göstermiştir. Sonuç olarak, heyelan duyarlılığı açısından Sinop ve yakın çevresindeki çalışma sahasının, % 10.77'sinin çok düşük derecede heyelana duyarlı, % 10.59'unun düşük derecede heyelana duyarlı, % 52.64'ünün orta derecede heyelana duyarlı, %25.66'sının yüksek derecede, % 0.34'ünün çok yüksek derecede heyelana duyarlı olduğu belirlenmiştir. Bu çalışma sonucunda, özellikle son yıllarda artan biçimde kullanılan AHP'nin çalışma alanı için yüksek performans sağladığı saptanmıştır
Anahtar Kelime:

Konular: Mühendislik, Jeoloji

Utilization and Application of AHP Method in Landslide Susceptibility Mapping Production (Sinop and its Surroundings)

Öz:
Computer-aided mapping technologies and developments used in improvement of these methods have led to the production of higher performing landslide susceptibility maps. In this study, a thorough review of the literature about the production of landslide susceptibility maps by using AHP (Analytic Hierarchy Process) was made and, also, landslide susceptibility evaluation of Sinop and its surroundings was analyzed by AHP. In the evaluation of landslide susceptibility factors such as aspect, lithology, land use, curvature, slope, elevation and proximity to the main road, river and structural elements are considered to be controlling factors in the landslide process. These factors are turned into grid maps according to their weighted values and by handling the values in comparison matrices in different manners, and variety of landslide susceptibility maps produced. Analysis of results showed that main controlling factors of landslides are the proximity to main road, aspect and lithology. As a result, in terms of landslide susceptibility, very low landslide susceptibility is determined in the 10.77%, low landslide susceptibility determined in the 10.59%, moderate landslide susceptibility is determined in the 52.64%, high landslide susceptibility determined in the 25.66%, very high landslide susceptibility determined in the 0.34%, of Sinop and its proximity area. This study reveal that AHP, which has been used increasingly in the last years, provides high performance in the study area
Anahtar Kelime:

Konular: Mühendislik, Jeoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmed, B., 2014. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides, 12 (6), 1077-1095.
  • Akgun, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9, 93–106.
  • Akgun, A., Bulut, F., 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51, 1377–1387.
  • Akgun, A., Turk. N., 2010. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61, 595–611.
  • Akgun, A., Dag, S., Bulut F., 2008. Landslide susceptibility mapping for a landslide-prone area (Fndikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127–1143.
  • Aktimur, H. T.,Yurdakul, M. E., Sönmez, M., Karabıyıklıoğlu, N., Kozan, T., Tekin, Z., Canpolat, M., 1993. Sinop İlinin Arazi Kullanım Potansiyeli, MTA Genel Müdürlüğü Jeoloji Etütleri Dairesi, Ankara.
  • Althuwaynee, O. F., Pradhan, B., 2014. Ensemble of Data-Driven EBF model with Knowledge Based AHP Model for Slope Failure Assessment in GIS Using Cluster Pattern Inventory. FIG Congress Engaging the Challenges – Enhancing the Relevance Kuala Lumpur, Malaysia 16-21 June.
  • Althuwaynee, O. F., Pradhan, B., Park, H. J., Lee, J. H., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.
  • Ayalew, L., Yamagishi, H., Marui, H., Kanno, T., 2005. Landslides in Sado Island of Japan: Part II. GISbased susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432– 445.
  • Bagherzadeh, A., Daneshvar, M. R. M., 2013. Mapping of landslide hazard zonation using GIS at Golestan watershed, northeast of Iran. Arabian Journal of Geoscience, 6, 3377–3388.
  • Barka, A., Sütçü, Y. F., Tekin, F., Gedik, İ., Karabıyıkoğlu, M., Saraç, G., Önal, Ö., Arel, E., Özdemir M., 1983. Sinop Yarımadası’nın jeolojisi ve tektonik evrimi, Türkiye Jeoloji Kurultayı Bülteni.
  • Barredo, J. I., Benavides, A., Hervh, J., Van Westen, C. J., 2000. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2 (1), 9-23.
  • Barredo, J. I., Hervh, J., Lomoschitz, A., Benavides, A., Van Westen, C. J., 2010. Landslide Hazard Assement using Gis and multicriteria evaluation techniques in the Tirajana basin, Gran Canaria Island, Spain. RUNOUT Project, funded by the European Comission under contract no.ENV4- CT97-0527 with DG XII, within FP4 Enviroment and Climate Programme.
  • Bathrellos, G. D., Gaki-Papanastassiou, K., Skilodimou, H. D., Skianis, G. A., Chousianitis, K. G., 2013. Assessment of rural community and agricultural development using geomorphological–geological factors and GIS in the Trikala prefecture (Central Greece). Stochastic Environmontal Research and Risk Assessment, 27, 573–588.
  • Bhatt, B. P., Awasthi, K. D., Heyojoo, B. P., Silwal, T., Kafle, G., 2013. Using geographic information system and analytical hierarchy process in landslide hazard zonation. Applied Ecology and Environmental Sciences, 1 (2), 14-22.
  • Calligaris, C., Poretti, G., Tariq, S., Melis, M. T., 2013. First steps towards a landslide inventory map of the Central Karakoram National Park. European Journal of Remote Sensing, 46, 272-287.
  • Castellanos Abella, E. A., Van Westen, C. J., 2007. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4 (4), 311-325.
  • Chalkias C., Ferentinou M., Polykretis C., 2014. GISBased Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences, 4, 176-190.
  • Chen, W., Li, W., Hou, E., Li, X., 2014. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, DOI 10.1007/s12665-014-3749-9.
  • Chingkhei, R. K., Shiroyleima, A., Robert Singh, L., Kumar, A., 2013. Landslide Hazard Zonation in NH-1A in Kashmir Himalaya, India. International Journal of Geosciences, 4, 1501-1508.
  • Chuan, T., Jing, Z., Jingtao, L., 2009. Emergency assessment of seismic landslide susceptibility: a case study of the 2008 Wenchuan earthquake affected area. Earthquake Engineering and Engineering Vibration, 8 (28), 207-217.
  • Çellek, S., 2013. Sinop-Gerze yöresinin heyelan duyarlılık analizi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Doktora Tezi, 271 s (yayımlanmış).
  • Daneshvar, M. R. M., 2014. Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran. Landslides, 11, 1079–1091.
  • Daneshvar, M. R. M., Bagherzadeh, A., 2011. Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran. Frontiers of Earth Science, 5 (1), 70-81.
  • Demir, G., Aytekin, M., Akgun, A., Ikizler, S. B., Tatar, O., 2013. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Natural Hazards, 65, 1481– 1506.
  • Diop, S., 2012. An Overview of Landslide Occurrence, Inventorization and Susceptibility Mapping in South Africa. Landslide Risk Assessments for Decision Making, Council for Geoscience, UR Forum Mapping Global Risk, July 2-6/ Cape Town, South Africa.
  • Domakinis, C., Oikonomidis, D., Astaras, T., 2008. Landslide mapping in the coastal area between the Strymonic Gulf and Kavala (Macedonia, Greece) with the aid of remote sensing and geographical information systems. International Journal of Remote Sensing, 29 (23), 6893–6915.
  • Esmali, Y., Ahmadi, H., 2003. Using GIS & RS in Mass Movements Hazard Zonation –A Case Study in Germichay Watershed, Ardebil, Iran. Map India Disaster Management Conference.
  • Ercanoglu, M., Kasmer, O., Temiz, N., 2008. Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bulletin of Engineering Geology and Environment, 67, 565–578.
  • Feizizadeh, B., Blaschke, T., 2014. An uncertainty and sensitivity analysis approach for GISbased multicriteria landslide susceptibility mapping. International Journal of Geographical Information Science, 28 (3), 610–638.
  • Feizizadeh, B., Blaschke, T., Nazmfar, H., 2014a. GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. International Journal of Digital Earth, 7 (8), 688-708.
  • Feizizadeh, B., Jankowski, P., Blaschke, T., 2014b. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Computers &Geosciences, 64, 81–95.
  • Feizizadeh, B., Jankowski, P., Blaschke, T., 2013a. A Spatially Explicit Approach for Sensitivity and Uncertainty Analysis of GIS-Multicriteria Landslide Susceptibility Mapping. ÖAW Verlag, Wien. eISBN 978-3-7001-7438-7, doi:10.1553/ giscience2013s157.
  • Feizizadeh, B., Blaschke, T., 2013. GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65, 2105–2128.
  • Feizizadeh, B., Blaschke, T., Roodposhti, M. S., 2013b. Integrating GIS Based Fuzzy Set Theory in Multicriteria Evaluation Methods for Landslide Susceptibility Mapping. International Journal of Geoinformatics, 9 (3), 49-57.
  • Feizizadeh, B., Blaschke, T., Nazmfar, H., Rezaei Moghaddam, M. H., 2013c. Landslide susceptibility mapping for the Urmia Lake basin, Iran: A multi-criteria evaluation approach using GIS. International Journal of Environmental Research, 7 (2), 319-336.
  • Feizizadeh, B., Blaschke, T., Rafiq, L., 2010. GısBased Landslıde Susceptabılıty Mappıng: A Case Study In Bostan Abad County, Iran.http://ispace. researchstudio.at/sites/ispace.researchstudio.at/ files/239_full.pdf
  • Gaprindashvili, G., 2011. Landslide hazard assessment in Georgia. Report on the 1st project of AES Geohazards Stream, Faculty of GeoInformation Science and Earth Observation (ITC) of the University of Twente, Enschede, The Netherlands.
  • Ghosh, S., Carranza, E. J. M., Van Westen, C. J., Jetten, V. G., Bhattacharya, D. N., 2011. Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India), Geomorphology, 131, 35–56.
  • Gorsevski, P. V., Jankowski, P., Gessler, P. E., 2006. An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35 (1), 121-146.
  • Gorsevski, P. V., Jankowski, P., 2010. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Computers & Geosciences, 36, 1005–1020.
  • Guoqing, Y., Haibo, Y., Zhizong, T., Baosen, Z., 2011. Landslide Risk Analysis of Miyun Reservoir Area Based on RS and GIS. Procedia Environmental Sciences, 10, 2567 – 2573.
  • Habibi, A., 2014. Landslide hazard zonation for determination appropriate regions with AHP model in dry areas of Iran Khuzestan (Iran). Alireza Habibi International Journal of Forest, Soil and Erosion (IJFSE), 4 (1), 228-826.
  • Hasekiogulları, G. D., Ercanoglu, M., 2012. A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63, 1157–1179.
  • Ilanloo, M., Soltani, Y. M., Jamnani, L. E., Ebrahimi, L., Myrfkhray, S., B. 2014. Earthquake Hazard Zonation using Analytical Hierarchy Method (AHP): A Case Study of Kelardasht. Geodynamics Research International Bulletin, 2 (4), 148-155.
  • Intarawichian, N., Dasananda, S., 2010. Analytical Hierarchy process for landslide susceptibility mapping in Lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science and Technology, 17 (3), 277-292.
  • Ivanova, E., 2014. Landslide susceptibility mapping using Frequency Ratio and Analytic Hierarchy Process (AHP): Comparative study of two areas in Bulgaria. International Conference Analysis and Management of Changing Risks for Natural Hazards,18-19 November, Padua, Italy.
  • Jin, K. C., Oh, C. Y., Chul, C. U., 2010 The comparative research of landslide susceptibility mapping using FR, AHP, LR, ANN. Journal of Korean Society for Geospatial Information System, 9, 13-20.
  • Kamp, U., Growley, B. J., Khattak, G. A., Owen, L. A., 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101, 631–642.
  • Kavzoglu, T., Sahin, E. K., Colkesen, I., 2014. Landslide susceptibility mapping using GISbased multi-criteria decision analysis, support vector machines, and logistic regressio n. Landslides, 11, 425–439.
  • Kayastha, P., Dhital, M. R., DeSmedt, F., 2013. Application of the Analytical Hierarchy Process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.
  • Khezri, S., 2011. Landslide susceptibility in the Zab Basin, northwest of Iran. Procedia Social and Behavioral Sciences, 19, 726–731.
  • Komac, M., 2003. Geohazard map of the central Slovenia – the mathematical approach to landslide prediction. Geologıja, 46 (2), 367–372.
  • Komac, M., 2005. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74, 17-28.
  • Kornejady, A., Kohzad, H., Sarparast, M., Khosravi, G., Mombeini, M., 2014. Performance assessment of two “LNRF” and “AHP-Area Density” models in landslide susceptibility zonation. Journal of Life Science and Biomedicine, 4 (3), 169-176.
  • Ladas, I., Fountoulis, I., Mariolakos, I., 2007. Usıng GIS & Multıcrıterıa Decısıon Analysıs in landslide susceptibility mapping -A case study in Messınıa Prefecture area (Sw Peloponnesus, Greece). Bulletin of the Geological Society of Greece, , Proceedings of the 11th International Congress, Athens.
  • Ma, F., Wang, J., Yuan, R., Zhao, H., Guo, J., 2013. Application of analytical hierarchy process and least-squares method for landslide susceptibility assessment along the Zhong-Wu natural gas pipeline, China. Landslides, 10, 481–492.
  • Margarint, M. C., Niculita, M., 2014. Comparison and validation of Logistic Regression and Analytic Hierarchy Process models of landslide susceptibility in monoclinic regions. A case study in Moldavian Plateau, N-E Romania. EGU General Assembly, Geophysical Research Abstracts, 16, 6371.
  • Marjanovıć, M., 2009a. Landslide susceptibility mapping with Support vector machine algorithm The GI-Forum Program Committee framework of Methods of artificial intelligence in GIS, a project of Czech Republic Grant Agency (CR GA 205/09/079).
  • Marjanovıć, M., 2009b. Landslıde Susceptıbılıty Modellıng: A Case Study On Fruška Gora Mountaın, Serbıa. Geomorphologıa Slovaca Et Bohemıca, 9 (1), 29-42.
  • Marjanoviç, M., Bajat, B., Kovaçeviç, M., 2009. Landslide susceptibility assessment with machine learning algorithms, International Conference on Intelligent Networking and Collaborative Systems, IEEE Computer Society, 273-278.
  • Marjanovıć, M., Abolmasov, B., Đurıć, U., Bogdanovıć, S., 2013. Impact of geoenvironmental factors on landslide susceptibility using an AHP method: A case study of Fruška Gora Mt., Serbia. Annales Geologıques De La Penınsule Balkanıque, 74, 91-100.
  • Mezughi, T. H., Akhir, J. M., Rafek, A. G., Abdullah, I., 2012. Analytical Hierarchyy Process Method for mapping landslide susceptibility to an area along the E-W Highway (Gerik-Jeli), Malaysia. Asian Journal of Earth Sciences, 5 (1), 13-24.
  • Mondal, S., Maiti, R., 2013. Integrating the Analytical Hierarchy Process (AHP) and the Frequency Ratio (FR) model in landslide susceptibility mapping of Shiv-khola Watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4 (4), 200–212.
  • Mondal, S., Maiti, R., 2012. Landslide susceptibility analysis of Shiv-Khola Watershed, Darjiling: A remote sensing & GIS based analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 40 (3), 483–496.
  • Moradi, S., Rezaei, M., 2014. A GIS-based comparative study of the analytic hierarchy process, bivariate statistics and frequency ratio methods for landslide susceptibility mapping in part of the Tehran metropolis, Iran. Geopersia, 4 (1), 45-61.
  • Moradi, M., Bazyar, M. H., Mohammadi, Z., 2012. GIS-Based Landslide Susceptibility Mapping by AHP Method, A Case Study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2 (7), 6715-6723.
  • Mustafa, I. S., Din, N. M., Ismail, A., Omar, R. C., Khalid, N. H. N., 2013. Antenna placement for landslide monitoring using analytical hierarchy process (AHP) and Geographical Information System (GIS). IEEE Symposium on Wireless Technology and Applications (ISWTA), September 22-25, Kuching, Malaysia. Niu, F., Luo, J., Lin, Z., Liu, M., Yin, G., 2014.
  • Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai– Tibet Engineering Corridor, China. Natural Hazards, 74, 1667–1682.
  • Othman, A. N., Mohd, W. M. N. W., Noraini, S,. 2014. Accuracy assessment of landslide prediction models. 8th International Symposium of the Digital Earth (ISDE8) IOP Publishing, IOP Conference Series, Earth and Environmental Science, 18, 1-6.
  • Ouri, A. E., Amirian, S., 2009. Landslide hazard zonation using MR and AHP methods and GIS techniques in Langan watershed, Ardabil, Iran. International Conference on ACRS 2009, Beijing,China.https://www.researchgate.net/ publication/266501883_Landslide_hazard_ zonation_using_MR_and_AHP_methods_ and_GIS_techniques_in_Langan_watershed_ Ardabil_Iran
  • Ownegh, M., 2004. Assessing the applicability of Australian landslide databases for hazard management. ISCO - 13th International Soil Conservation Organisation Conference – Brisbane, July.
  • Park, S., Choi, C., Kim, B., Kim, J., 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68, 1443–1464.
  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., 2012b. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63, 965–996.
  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Moezzi, K. D., 2012a. Landslide susceptibility mapping using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran (Chapter 2). Terrigenous Mass Movements, Springer-Verlag Berlin Heidelberg, DOI: 10.1007/978-3-642 25495-6-2.
  • Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69, 749–779.
  • Pourghasemi, H. R., Moradi, H. R., Fatemi-Aghda, S. M., Gokceoglu, C., Pradhan, B., 2014. GISbased landslide susceptibility mapping with probabilistic likelihood ratio and spatial multicriteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences, 7, 1857– 1878.
  • Prabu, S., Ramakrishnan, S. S., 2009. Combined use of Socio Economic Analysis, Remote Sensing and GIS Data for landslide hazard mapping using ANN. Journal of the Indian Society of Remote Sensing, 37, 409–421.
  • Quan, H. C., Lee, B. G., 2012. GIS-Based landslide susceptibility mapping using Analytic Hierarchy Process and Artificial Neural Network in Jeju (Korea). KSCE Journal of Civil Engineering, 16 (7), 1258-1266.
  • Qiu, D., Niu, R., Zhao, Y., 2014. Landslide susceptibility zonation based on the Analytic Hierarchy Process and information method. Applied Mechanics and Materials, 580-583, 2658-2662.
  • Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., Ekercin, S., 2012. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environmental Earth Sciences, 66, 2063–2073.
  • Rozos, D., Bathrellos, G. D., Skillodimou, H. D., 2011. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environmental Earth Sciences, 63, 49–63.
  • Saadatkhah, N., Kassim, A., Lee, M. L., 2014a. Qualitative and quantitative landslide susceptibility assessments in Hulu Kelang area, Malaysia. The Electronic Journal of Geotechnical Engineering, Bundle C, 19, 545-563.
  • Saadatkhah, N., Kassim, A., Lee, M. L., 2014b. Susceptibility assessment of shallow landslides in Hulu Kelang Area, Kuala Lumpur, Malaysia using Analytical Hierarchy Process and Frequency Ratio. Geotechnical and Geological Engineering, 33 (1), 43-57.
  • Shafri, H. Z. M., Zahidi, I. M. S., Bakar, A. S., 2010. Development of landslide susceptibility map utilizing remote sensing and Geographic Information Systems (GIS). Disaster Prevention and Management, 19 (1), 59 – 69.
  • Sinop ÇED, 2007. İl Çevre ve Orman Müdürlüğü, Sinop İli Çevre Durum Raporu, 86 s., Sinop.
  • Solle, M. S., Mustafa, M., Baja, S., Imran, A. M., 2013. Landslide susceptibility zonation model On Jeneberang Watershed using Geographical Information System and Analytical Hierarchy Process. International Journal of Engineering and Innovative Technology, 2 (7), 174-179.
  • Solle, M. S., 2013. Landslide Susceptibility zonation model on Jeneberang Watershed Based On Geographical Information System and Analytical Hierarchy Process. The 2nd Southeast Asian Gateway Evolution Meeting (SAGE), Berlin, Germany.
  • Suh, J., Choi, Y., Roh, T. D., Lee, H. J., Park, H. D., 2011. National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea. Environmental Earth Sciences, 63, 619–632.
  • Tazik, E., Jahantab, Z., Bakhtiari, M., Rezaei, A., Alavipanah, S. K., 2014. Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W3, The 1st ISPRS International Conference on Geospatial Information Research, Tehran, Iran.
  • Teimouri, M., Graee, P., 2012. Evaluation of AHP and Frequency Ratio Methods in landslide hazard zoning (Case Study: Bojnord Urban Watershed, Iran). International Research Journal of Applied and Basic Sciences, 3 (9), 1978-1984.
  • Thanh, L. N., DeSmedt, F., 2012. Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environmental Earth Sciences, 66, 1739–1752.
  • Vahidnia, M. H., Alesheikh, A., Alimohammadi, A., Hosseinali, F., 2009. Landslide hazard zonation using quantitative methods in GIS. International Journal of Civil Engineering, 7 (3), 176-189.
  • Wu, C. H., Chen, S. C., 2009. Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 112, 190–204.
  • Yalçın A., 2005. Ardeşen (Rize) Yöresinin Heyelan Duyarlılığı Açısından İncelenmesi, Doktora, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon.
  • Yalcin, A., Bulut, F., 2007. Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NETurkey). Natural Hazards, 41, 201–226.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72, 1–12.
  • Yalcin, A., Reis, S., Aydinoglu, A. C., Yomralioglu, T., 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85, 274–287.
  • Yamani, M., Hasanpoor, S., Mostafaei, A., Shadman Roodposhti, M., 2013. Mapping landslide hazard zonation in Great Karoon Aquifer Basin by Analytical Hierarchy Process (AHP) model in Geographic Information System (GIS) environment. Geography and Environmen Planning Journal, 48 (4), 13-16.
  • Yang, Z. H., Lan, H. X., Gao, X., Li, L. P., Meng, Y. S., Wu, Y. M., 2015. Urgent landslide susceptibility assessment in the 2013 Lushan earthquakeimpacted area, Sichuan Province, China. Natural Hazards, 75, 2467–2487.
  • Yanrong, L., Aydın, A., Xiqiong, X., Nengpan, J., Jianjun, Z., Özbek, A., 2012. Landslide susceptibility mapping and evaluation along a river valley in China. ACTA Geologica Sinica, 86 (4), 1022-1030.
  • Youssef, A. M., 2015. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. Environmental Earth Sciences, 73 (12), 8499-8518.
  • Youssef, A. M., Pradhan, B., Tarabees, E., 2011. Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arabian Journal of Geosciences, 4, 463–473.
  • Yoshimatsu, H., Abe, S., 2006. A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides, 3, 149–158.
  • Zare, M., Jouri, M. H., Salarian, T., Askarizadeh, D., Miarrostami, S., 2014. Comparing of bivariate statistic, AHP and combination methods to predict the landslide hazard in northern aspect of Alborz Mt. (Iran). International Journal of Agriculture and Crop Sciences, 7 (9), 543-554.
APA çellek s, BULUT F, ERSOY H (2015). AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). , 59 - 90.
Chicago çellek seda,BULUT Fikri,ERSOY Hakan AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). (2015): 59 - 90.
MLA çellek seda,BULUT Fikri,ERSOY Hakan AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). , 2015, ss.59 - 90.
AMA çellek s,BULUT F,ERSOY H AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). . 2015; 59 - 90.
Vancouver çellek s,BULUT F,ERSOY H AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). . 2015; 59 - 90.
IEEE çellek s,BULUT F,ERSOY H "AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi)." , ss.59 - 90, 2015.
ISNAD çellek, seda vd. "AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi)". (2015), 59-90.
APA çellek s, BULUT F, ERSOY H (2015). AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). Jeoloji Mühendisliği Dergisi, 39(2), 59 - 90.
Chicago çellek seda,BULUT Fikri,ERSOY Hakan AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). Jeoloji Mühendisliği Dergisi 39, no.2 (2015): 59 - 90.
MLA çellek seda,BULUT Fikri,ERSOY Hakan AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). Jeoloji Mühendisliği Dergisi, vol.39, no.2, 2015, ss.59 - 90.
AMA çellek s,BULUT F,ERSOY H AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). Jeoloji Mühendisliği Dergisi. 2015; 39(2): 59 - 90.
Vancouver çellek s,BULUT F,ERSOY H AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). Jeoloji Mühendisliği Dergisi. 2015; 39(2): 59 - 90.
IEEE çellek s,BULUT F,ERSOY H "AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi)." Jeoloji Mühendisliği Dergisi, 39, ss.59 - 90, 2015.
ISNAD çellek, seda vd. "AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi)". Jeoloji Mühendisliği Dergisi 39/2 (2015), 59-90.