Yıl: 2017 Cilt: 18 Sayı: 1 Sayfa Aralığı: 37 - 48 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri

Öz:
T oros sediri (Cedrus libani A. Rich.) ülkemizin ekolojik ve ekonomik açıdan en önemli ağaç türlerinden birisidir. Bu nedenle, sedir ormanlarının bugün ve geleceğe dönük yönetim ve planlama stratejilerinin geliştirilmesinde, türün büyüme ve hasılatına ilişkin bilgilere ihtiyaç duyulmaktadır. Ormanların büyüme ve hasılatına ilişkin tahminlerde kullanılan en önemli yapı taşlarından birisi, ağaç hacim tahminleridir. Bu amaçla, çalışmada Batı Akdeniz Yöresi doğal T oros sediri meşcerelerinin hacim tahminleri için hacim denklemleri geliştirilmiştir. En uygun hacim denkleminin seçimi; model geliştirme ve test verileri için, altı farklı uygunluk ölçütü (uyum indeksi, ortalama hata, ortalama mutlak hata, maksimum mutlak hata, hata kareler ortalamasının karekökü ve Akaike bilgi kriteri) kullanılarak belirlenen model nisbi sıralamalarına göre gerçekleştirilmiştir. Model nisbi sıralarına göre, en başarılı hacim modelleri, T akata (1958) ve Schumacher ve Hall (1933)'dir. Ancak, yörede doğal sedir meşcerelerinde yapılacak ağaç hacim tahminleri için, yaygın olarak kullanılan ve nispeten daha kolay bir model olması nedeniyle, Schumacher-Hall (1933) hacim denklemi önerilmiştir
Anahtar Kelime:

Konular: Çevre Bilimleri

Volume equations for natural Taurus cedar stands in West Mediterranean Region

Öz:
T aurus cedar (Cedrus libani A. Rich.) is one of the most important tree species in T urkey. T herefore, the information is necessary about growth and yield of the species for developing future management and planning strategies. T he one of the essential building blocks in forest growt h and yield prediction models is the equations for estimating individual tree volume. In this study, tree volume equations were developed for T aurus cedar stands in West Mediterranean Region. T he tested models were compared using six performance criteria (Fit index, average bias, average absolute residuals, absolute maximum bias, and Akaike Information criteria) for model development and validation dataset. According to relative ranks of models, the best volume equations are T akata (1958) and Schumacher-Hall (1933) for T aurus cedar. As a result, t ree volume can be estimated with high precision using Schumacher-Hall (1933)’s equation for natural cedar stands in this region
Anahtar Kelime:

Konular: Çevre Bilimleri
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akindele, S.O., LeMay, V.M., 2006. Development of tree volume equations for common timber species in tropical rain forest area of Nigeria. Forest Ecology and Management, 226: 41-48.
  • Alegria, C., Tome, M., 2011. A set of models of individual tree merchantable volume prediction for Pinus pinaster Aiton in central inland of Portugal. European Journal of Forest Research, 130:871-879.
  • Bailey, R.L., 1995. Upper stem volumes from stem analysis data: an overlapping bolts method. Can J. For. Res., 26(1): 170-173.
  • Baskerville, G.L., 1972. Use of logarithmic regression in the estimation of plan biomass. Canadian Journal of Forest Research, 2:49-53.
  • Bi, H., Hamilton, F., 1998. Stem volume equations for native tree species in southern New South Wales and Victoria. Australian Forestry, 61(4): 275-286.
  • Boydak, M., 2003. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management, 178: 231-243.
  • Bozkuş, H.F., Carus, S., 1997. Toros göknarı (Abies cilicica Carr.) sedir (Cedrus libani Link.)’in çift girişli gövde hacmi tabloları ve mevcut tablolarla karşılaştırılması. Journal of the Faculty of Forestry İstanbul University (JFFIU), 47(1): 51-70.
  • Brooks, J.R., Jiang, L., Özçelik, R., 2008. Compatible stem volume and taper equations for Brutian Pine, Cedar of Lebanon, and Cilicica Fir in Turkey. Forest Ecology and Management, 256:147-151.
  • Brooks, J.R., Wiant, H.V., 2008. Ecoregion based local volume equations for Appalachian hardwoods. Northern Journal of Applied Forestry, 25(2): 87-92.
  • Burk, T. E., 1989. Individual Tree volume equations for The Northeastern United States: Evaluation and new form quotient board foot equations. Northern Journal of Applied Forestry, 6(1):27-31.
  • Burkhart, H.E., Tome, M., 2012. Modeling forest trees and stands. Springer, Dordrecht.
  • Castedo-Dorado, F., Gomez-Garcia, E., Dieguez-Aranda, U., Barrio-Anta, M., Crecente-Campo, F., 2012. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Annals of Forest Science, 69: 735-746.
  • Clutter, J.L., Fortson, J.C., Pienaar, L.V., Bailey, R.L., 1983. Timber management: A quantitative approach. Krieger Publishing Company, Malabar, Florida.
  • Crecente-Campo, F., Alboreca, A.R., Dieguez-Aranda, U., 2009. A Merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of Forest Science, 66-808.
  • de-Miguel, S., L. Mehtatalo, Z. Shater, B. Kraid, T. Pukkala., 2012. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Can. J. For. Res., 42: 1383-1394.
  • Dieguez-Aranda, U., Castedo-Dorado, F., AlvarezGonzalez, J.G., Rojo, A., 2006. Compatible taper function for Scots Pine plantations in Nortwestern Spain. Canadian Journal of Forest, 36(5): 1190-1205.
  • Evcimen, B.S., 1963. Türkiye Sedir ormanlarının ekonomik önemi, hasılat ve amenajman esasları. Orman Genel Müdürlüğü Yayını, İstanbul.
  • Fang, Z., Borders, B.E., Bailey, R.L., 2000. Compatible volume taper models for loblolly and slash pine based on system with segmented-stem form factors. Forest Science, 46: 1-12.
  • Fowler, G.W., 1997. Individual tree volume equations for Red Pine in Michigan. Northern Journal of Applied Forestry, 14:53-58.
  • Gomez-Garcia, E., Crecente-Campo, F., Barrio-Anta, M., Dieguez-Aranda, U., 2015. A disaggregated dynamic model for predicting volume, biomass and carbon stocks in even-aged pedunculate oak stands in Galicia (NW Spain). European Journal of Forest research, 134: 569- 583.
  • Hjelm, B., Johansson, T., 2012. Volume equations for poplars growing on farmland in Sweden. Scandinavian Journal of Forest Research, 27:561-566.
  • Honer, T., 1967. Standard volume tables and merchantable conversion factors for the commercial tree species of central and eastern Canada. For Manage Res and Serv Inst, Inf Rep FMR-X-5, Ottawa.
  • Husch, B., Beers, T.W., Kershaw, T.A., 2003. Forest mensuration, Wiley 4, NewYork.
  • Jiang, L., Brooks, J.R., Wang, J., 2005. Compatible taper and volume equations for yellow-poplar in West Virginia. Forest Ecology and Management, 213: 399- 409.
  • Kelly, T.F., Beltz, R.C., 1987. A Comparison of tree volume estimation models for forest inventory, USDA Forest Service, Southern Forest Experiment Station, Research Paper SO-233.
  • Mısır, N., Mısır, M., 2004. Developing double-entry tree volume table for Ash in Turkey. Kafkas Üniversitesi, Artvin Orman Fakültesi Dergisi, 3(4):135-144.
  • Özçelik, R., 2008. Comparison of formulae for estimating tree bole volumes of Pinus sylvestris. Scandinavian Journal of Forest Research, 23: 412-418.
  • Özkurt, A., 2000. Okaliptüs (Eucalyptus grandis W. Hill ex. Maiden) için hacim tablosu. Doğu Akdeniz Ormancılık Araştırma Enstitüsü Dergisi, 6: 87-105.
  • Perez, D., 2008. Growth and volume equations developed from stem analysis for Tectora grandis in Costa Rica. Journal of Tropical Forest Science, 20: 66-75.
  • Pillsbury, N.H., McDonald, P.M., Simon, V., 1995. Reliability of Tanoak volume equations when applied to different areas. Western Journal of Applied Forestry, 10(2): 72-78.
  • Poudel, K.P., Cao, Q.V., 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For. Sci., 59(2): 243-252.
  • Rachid Casnati, C., Mason, E.G., Woollons, R., Resquin, F., 2014. Volume and taper equations for P. taeda (L.) and E. grandis (Hill ex. Maiden). Agrociencia Uruguay, 18(2): 47-60.
  • Ritchie, M.W., Hann, D.W., 1984. Nonlinear equations for predicting diameter and squared diameter inside bark at breast height for Douglas-fir. Oregon State University, Forest Research Lab., 47: 1-17.
  • Rodriguez, F., Lizarralde, I., Fernandez-Landa, A., Condes, S., 2014. Non-destructive measurement techniques for taper equation development: a study case in the Spanish Northern Iberian Range. European Journal of Forest Research, 133: 213-223.
  • Sakıcı, O.E., Yavuz, H., 2005. Kastamonu-Bostan yöresi Uludağ Göknarı meşcerelerinde gövde profili denklemleriyle biyokütle miktarının belirlenmesi. Gazi Üniversitesi Kastamonu Orman Fakültesi Dergisi, 5(1): 7-22.
  • Saraçoğlu, N., 1988. Kızılağaç (Alnus glutinosa Gaertn subsp. Barbata (C.A. Mey.) Yalt.) gövde hacim ve biyokütle tablolarının düzenlenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Schumacher, F.X., Hall, F.D.S., 1933. Logarithmic expression of timber-tree volume. J. Agric. Res., 47: 719-734.
  • Scott, C.T., 1981. Northeastern forest survey revised cubicfoot volume equations. USDA Forest Service, Northeastern Forest Experiment Station, Research Note NE-304.
  • Takata, K., 1958. Construction of universal diameter-heightcurves. Journal of Japanese Forest Society, 40:1.
  • Teshome, T., 2005. Analysis of individual tree volume equations for Cupressus Lusitanica in Munessa Forest, Ethiopia. Southern African Forestry Journal, 203: 27-32.
  • Van Larr, A., Akça, A., 1997. Forest mensuration. Cuvillier Verlag, Göttingen.
  • Yavuz, H., 1999. Taşköprü yöresinde Karaçam için hacim fonksiyonları ve hacim tabloları. Turkish Journal of Agriculture and Forestry, 23: 1181-1188.
APA Özçelik R, ÇEVLİK M (2017). Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. , 37 - 48.
Chicago Özçelik Ramazan,ÇEVLİK Meryem Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. (2017): 37 - 48.
MLA Özçelik Ramazan,ÇEVLİK Meryem Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. , 2017, ss.37 - 48.
AMA Özçelik R,ÇEVLİK M Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. . 2017; 37 - 48.
Vancouver Özçelik R,ÇEVLİK M Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. . 2017; 37 - 48.
IEEE Özçelik R,ÇEVLİK M "Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri." , ss.37 - 48, 2017.
ISNAD Özçelik, Ramazan - ÇEVLİK, Meryem. "Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri". (2017), 37-48.
APA Özçelik R, ÇEVLİK M (2017). Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. Turkish Journal of Forestry, 18(1), 37 - 48.
Chicago Özçelik Ramazan,ÇEVLİK Meryem Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. Turkish Journal of Forestry 18, no.1 (2017): 37 - 48.
MLA Özçelik Ramazan,ÇEVLİK Meryem Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. Turkish Journal of Forestry, vol.18, no.1, 2017, ss.37 - 48.
AMA Özçelik R,ÇEVLİK M Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. Turkish Journal of Forestry. 2017; 18(1): 37 - 48.
Vancouver Özçelik R,ÇEVLİK M Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri. Turkish Journal of Forestry. 2017; 18(1): 37 - 48.
IEEE Özçelik R,ÇEVLİK M "Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri." Turkish Journal of Forestry, 18, ss.37 - 48, 2017.
ISNAD Özçelik, Ramazan - ÇEVLİK, Meryem. "Batı Akdeniz Yöresi doğal sedir meşcereleri için hacim denklemleri". Turkish Journal of Forestry 18/1 (2017), 37-48.