Yıl: 2017 Cilt: 42 Sayı: 5 Sayfa Aralığı: 620 - 633 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU

Öz:
Selüloz, glikopiranoz birimlerinin ?-1,4 bağları ile bağlanması ile oluşan ve dünyada en yaygın olarak bulunan polimerdir. Çeşitli mikroorganizmalardan biyosentez yolu ile elde edilen selüloza bakteriyel selüloz (BS) adı verilmektedir. Bu çalışmada, evsel sirkeden selüloz üreticisi bakteri izole edilmiş ve Komagataeibacter hansenii GA2016 olarak tanımlanmıştır. BS üreticisi mikroorganizma ile BS üretilmiş ve üretilen BS'nin fiziksel, kimyasal, yapısal ve termal özellikleri belirlenmiştir. Komagataeibacter hansenii GA2016'nın yüksek derecede kristaliniteye sahip BS ürettiği bulunmuştur. BS'nin FTIR spektrumunun bitkisel selüloz spektrumuna benzer, ortalama lif çapının bitkisel selülozdan yaklaşık 120 kat daha ince ve termal kararlılığının bitkisel selüloza kıyasla daha yüksek olduğu belirlenmiştir. Bu çalışmanın sonucunda, Komagataeibacter hansenii GA2016'nın yüksek oranda ve birçok polimere göre üstün fizikokimyasal özelliklere sahip BS ürettiği, dolayısıyla gıda sanayinde BS üretiminde kullanılabileceği gösterilmiştir
Anahtar Kelime:

Konular: Biyoloji Gıda Bilimi ve Teknolojisi

PRODUCTION AND CHARACTERIZATION OF BACTERIAL CELLULOSEWITH KOMAGATAEIBACTER HANSENII GA2016

Öz:
Cellulose is the most common polymer in the world, formed by β-1,4 linked glucopyranose units. Cellulose that is produced by various microorganisms via biosynthesis is called bacterial cellulose (BC). In this study, the cellulose-producing bacteria was isolated from the homemade apple vinegar and identified as Komagataeibacter hansenii GA2016. BC was produced with the BC producer microorganism and the physical, chemical, structural and thermal properties of the produced BC were determined. It was found that Komagataeibacter hansenii GA2016 produced highly crystalline BC. The FTIR spectrum of the BC was similar to the plant cellulose spectrum, its fiber diameter was about 120 times thinner than plant cellulose and the thermal stability was higher than that of plant cellulose. As a result of this study, it has been shown that Komagataeibacter hansenii GA2016 produces BC with high yield and superior physicochemical properties compared to many polymers, and thus it can be used for the production of BC in food industry
Anahtar Kelime:

Konular: Biyoloji Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akoğlu, A., Karahan, A.G., Çakır, İ., Çakmakçı, M.L. (2010). Bakteriyel selülozun özellikleri ve gıda sanayinde kullanımı. GIDA 35(2): 127-134.
  • AOAC (1989). Officials methods of analysis. 15th Edition, Washington DC, USA.
  • Aydın, Y.A., Aksoy, N.D. (2013). Çeşitli gıda atıklarından selüloz üreten asetik asit bakterilerinin izolasyonu ve tanımlanması. Türk Mikrobiyol. Cem. Dergisi 43(1):26-35.
  • Aydın, Y.A., Aksoy, N.D. (2014). Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl. Microbiol. Biotechnol. 98:1065-1075.
  • Aydıncak, K. (2012). Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi., Ankara, Türkiye.
  • Bae, S., Shoda, M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 67: 45–51.
  • Barud, H. S., Ribeiro, C. A., Crespi, M. S., Martines, M. A. U., Dexpert-Ghys, J., Marques, R. F. C., (2007). Thermal characterization of bacterial cellulose–phosphatecomposite membranes. J. Therm. Anal. Cal. 87(3),815–818.
  • Bielecki, S., Krystynowicz, A.,Turkiewicz, M. and Kalinowska, H. (2000). Bacterial Cellulose. In: Steinbuchel A (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. Wiley-VCH Verlag GmbH, Munster, Germany.
  • Blast (2017). Basic Local Alignment Search Tool. http://www.ncbi.nlm.nih.gov/blast/ (Accessed 10 January 2017).
  • Brown, R.M. (2004). Cellulose Structure and biosynthesis: What is in store for the 21th century. J Poly Sci: Part A: Polymer. Chem. 42:487-495.
  • Carreira, P., Mendes, J.A., Trovatti, E., Serafim, L.S., Freire, C.S., Silvestre, A.J., Neto, C.P., (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour. Technol. 102: 7354– 7360.
  • Castro, C., Zuluaga, R., Putaux, J.L., Caroa, G., Mondragon, I., Ganán, P., (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes, Carbohydr. Polym. 84(1): 96- 102.
  • Chen, P., Cho, S.Y., Jin, H.J., (2010). Modification and Applications of Bacterial Celluloses in Polymer Science. Macromol. Res. 18: 309-320.
  • Chen, L., Hong, F., Yang, X.X., Han, S.F. (2012). Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour. Technol. 135: 464–468.
  • Cheng, K.C., Catchmark , J.M., Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033- 1045.
  • Czaja, W., Romanovicz, D., Brown Jr., R. M. (2004). Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 403–411.
  • Dahman, Y. (2009). Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J. Nanosci. Nanotechnol. 9: 5105-5122.
  • De Souza, C.F., Lucyszyn, N., Woehl, M.A., Riegel-Vidotti, I.C., Borsali, R., Sierakowski, M.R. (2013). Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr. Polym. 93: 144-153.
  • Drysdale, G. S. and Fleet, G. H. (1988). Acetic acid bacteria in winemaking: a review. Am. J. Enol. Vitic. 39(2):143-154.
  • Fabio, P.G., Nuno, H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Carmen S.R.F. (2013). Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55: 205-211.
  • Erdoğan, K. (2007). Tütün saplarından ksilooligosakkarit üretimi. (Yüksek Lisans Tezi), Gaziosmanpaşa Üniversitesi. Gıda Mühendisliği Anabilim Dalı, Tokat.
  • Fang, L., Catchmark, J.M. (2014). Characterization of water-soluble exopolysaccharide from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965-3978.
  • Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y. (2014). Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via ımmobilising ε-polylysine nanocoatings. Food Hydrocoll. 36: 204-211.
  • Gayathry, G., Gopalaswamy, G. (2014). Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian J. Fibre Text. Res. 39: 93-96.
  • Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. (2012). Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int. Food Res. J. 19(1): 153-158.
  • Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C. (2009). Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. 29: 546–551.
  • Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Freire, C.S.R. (2013). Production of bacterial cellulose by gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55: 205-211.
  • Ha, J. H., Park, J. K. (2012). Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korean J. Chem. Eng. 29(5): 563-566.
  • Halib, N., Iqbal, M. C., Amin. M., Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food ındustries as a source of cellulose. Sains Malaysiana 41(2): 205–211.
  • Hermans, P. H., Weidinger, A. (1948). Quantitative x‐ray investigations on the crystallinity of cellulose fibers. A background analysis. J. App. Phy. 19(5): 491.
  • Hong, F., Qiu, K. (2008). An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter acetisubsp. xylinus ATCC 23770. Carbohydr. Poly. 72: 545–549.
  • Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., Sun, D. (2014), Recent advances in bacterial cellulose. Cellulose 21(1):1-30.
  • Hungund, B.S., Gupta, S.G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26: 1823-1828.
  • Iguchi, M., Yamanaka, S., Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35(2):261-270.
  • Johnson, D.C. ve Neogi, A.N. (1989). Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • Jonas, R., Farah, L.F. (1998). Production and application of microbial cellulose. Polym Degrad. Stab. 59:101-106.
  • Jung, J.Y., Park, J.K., Chang, H.N. (2005). Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living noncellulose producing cells. Enzyme Microb. Technol. 37:347-354.
  • Karahan A.G., Akoğlu A., Çakır, I., Kart, A., Çakmakçı M.L., Uygun, A., Göktepe, F. (2011). Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from Turkish vinegar. J. App. Poly. Sci. 121(3):1823-1831.
  • Kato, N., Sato, T., Kato, C., Yajima, M., Sugiyama, J., Kanda, T., Mizuno, M., Nozaki, K., Yamanaka, S., Amano, Y. (2007). Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles 11(5): 693-698.
  • Keshk, S.M.A.S. (2014). Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus, Carbohyd. Polym. 99: 98-100.
  • Klemm, D., Heublein, B., Fink, H.P. (2005). Cellulose: fascinating biopolymer and sustainable raw material A. Bohn, Polym. Sci. 44: 3358-3393.
  • Ko, Y. H., Oh, H.J., Lee, H.J. (2015). Use of bacterial cellulose from Gluconacetobacter hansenii NOK21 as a proton permeable membrane in microbial fuel cells. J. Microb. Biochem. Techno. 7(3): 145-151.
  • Kong, F.L., Zhang, M.W., Kuang, R.B., Yu, S.J., Chi, J.W., Wei, Z.C. (2010). Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn.). Carbohyd. Polym. 81:612-616.
  • Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R., 2009. Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by x-ray scattering. Cellulose, 16: 999-1015.
  • Lin, D., Sanchez, P.L., Li, R., Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol. 151:113-119.
  • Lin, S. P., Liu, C. T., Hsu, K. D., Hung, Y. T., Shih, T. Y., Cheng, K. C. (2016). Production of bacterial cellulose with various additives in a PCS rotating diskbioreactor and its material property analysis. Cellulose 23(1): 367-377.
  • Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T., Komagata, K. (2001).
  • Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol 47: 119-131.
  • Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C. (2014). Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites. Energy Procedia 56: 211-218.
  • Lynd, L.R., Weimer, P.J. ve Van Zyl, W.H. (2002). Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3):506-77.
  • Mantanis, G. I., Young, R. A., Rowell, R. M. (1995). Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1-22.
  • Marchessault, R.H., Sundararajan, P.R. (1983). Cellulose. In Aspinall G.O. (editor) The Polysaccharides, Volume 2, page 12-95. New York: Academic Press, Inc.
  • Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D. (2009). New biocomposites based on thermoplastic starch and bacterial cellulose. Composites Sci Tech. 69: 2163- 2168.
  • Mazumdar, S. (1999). A standardless method of quantitative ceramic analysis using X-ray powder diffraction. J. Appl. Cryst. 32:381-386.
  • Mohammadkazemi, F., Azin, M., Ashori, A. (2015). Production of bacterial cellulose using different carbon sources andculture media. Carbohyd. Polym. 117: 518–523.
  • Morgan, J. L., Strumillo, J., ve Zimmer, J. (2013). Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431): 181-186.
  • Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M., 2009. Preparation and characterization of microcrystalline cellulose (MCC). BioResources, 4:1359-1371.
  • Neto, C.P., Mikkelsen, A.G., Flanagan, B.M., Dykes, G.A., Gidley, M.J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107: 576-583.
  • Nesic, A.R., Trifunovic, S.S., Grujic, A.S., Velickovic, S.J., Antonovic, D.G. (2011). Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr. Res. 346(15): 2463- 2468.
  • Ng, C., Sheu, F., Wang, C., Shyu, Y. (2004). Fermentation of Monascus purpureus on agri-by- products to make colorful and functional bacterial cellulose (NATA). Microbiol. Indones. 4(1): 6-10.
  • Park, J.K., Jung, J.Y., Park, Y.H. (2003a). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25:2055–2059.
  • Park, J.K., Park, Y.H., Jung, J.Y. (2003b). Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol. Bioprocess Eng. 8(2):83-88.
  • Perez, S., Samain, D. (2010). Structure and engineering of celluloses. Adv. Carbohydr. Chem. Biochem. 64: 25-116.
  • Ramana, K., Tomar, A., Singh, L., 2000. World Journal of Microbiology and Biotechnology (2000) 16: 245. doi:10.1023/A:1008958014270 y, B.G. (1949). Aqueous colloidal solutions of cellulose micelles. Acta Chemica Scandinavica, 3: 649-450.
  • Rani, M.U., Appaiah, K.A. (2013). Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food. Sci. Technol. 50(4):755-762.
  • Robertson, A.A. (1964). Cellulose-liquid interactions. Pulp Paper Mag Canada 65:171-178.
  • Rodriguez, R., Jiménez, R., Fernández-Bolaños, J., Guillén, R., Heredia, A. (2006). Dietary fibre from plant products as source of functional ingredients, Trends Food Sci. Tech. 17(1): 3-15.
  • Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microb. Rev. 55 (1): 35-58.
  • Röder, T., Moosbauer, J., Fasching, M., Bohn, A., Fink, H.P., Baldinger, T., Sixta, H., 2006.
  • Crystallinity determination of native cellulose comparison of analytical methods. Lenzinger Berichte 86:85-89.
  • Saibuatong, O.A., Phisalaphong, M. (2010). Novo Aloe Vera-Bacterial Cellulose Composite Film From Biosynthesis. Carbohyd. Polym. 79(2): 455- 460.
  • Saxena, I.M., Lin, F.C., Brown, R.M. (1990). Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol., 15: 673-683.
  • Saxena, I.M., Kudlicka, K., Okuda, K., Brown, R.M. (1994). Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176:5735-5752.
  • Schramm, M., Hestrin, S. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Appl. Microbiol. 11: 123-129.
  • Schröpfer, S. B., Bottene, M. K., Bianchin, L., Robinson, L. C., Lima, V., Jahno, V. D., Barud, H. S., Ribeiro, S. J. L. (2015). Biodegradation evaluation of bacterial cellulose, plant cellulose and poly (3-hydroxybutyrate) in soil. Polímeros 25(2), 154-160.
  • Schurz, J., Klapp. H. (1976). Untersuchungen a mikrokristallinen und mikrofeinen cellulosen. Das Papier 30:510-513.
  • Segal, L., Creely, J. J., Martin, A. E. J., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res. J. 29:786-794.
  • Seifert, M., Hesse, S., Kabrelian, V., Klemm, D. (2003). Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Poly Sci: Part A: Polym. Chem. 42:463- 470.
  • Shi, Z., Zhang, Y., Phillips, G. O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids 35: 539-545.
  • Shoda, M., Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10: 1-8.
  • Sivam, A.S., Sun-Waterhouse, D., Perera, C.O., Waterhouse, G.I.N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 131(3):802-810.
  • Soares, S., Camino, G., Levchik, S. (1995). Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polymer. Degrad. Stab. 49: 275-283.
  • Son, C., Chung, S., Lee, J., Kim, S. (2002). Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microb. Biotech. 12(5):722-728.
  • Son, H.J., Kim, H.G., Kim, K.K., Kim, H.S., Kim, Y.G., Lee, S.J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol. 86: 215-219.
  • Stephens, S.R., Westland, J.A., Neogi, A.N. (1990). Method of using bacterial cellulose as a dietary fiber component. US patent 4960763. Sun, J.X., Xu, F., Sun, X.F., Xiao, B., Sun, R.C. (2005). Physico-chemical and thermal characterization of cellulose from barley straw. Polym. Degr. Stab. 88: 521-531.
  • Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S.J., Shi, J., Yi, C. (2010). Antioxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem. 119:753-757. Tappi (1991). Tappi useful method UM256. Water retention value (WRV), Tappi Useful Methods, Tappi Press, Atlanta, USA.
  • Teeäär, R., Serimaa, R., Paakkari, T., 1987. Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull., 17: 231-237.
  • Uraki, Y., Morito, M., Kishimoto, T., Sano, Y. (2002). Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56: 341-347.
  • Usha, R.M., Appaiah, K.A. (2011). Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract an agro-industry waste. J. Microbiol. Biotechnol. 21: 739-745.
  • Uzyol, H. K., Saçan, M.T. (2017). Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ. Sci. Pollut. Res. Int. 24:11154–11162
  • Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf P. (1998). Improved production of bacterial cellulose and its application potential. Polym. Deg. Stab. 59(1-3) 93- 99.
  • Vazquez, A., Foresti, M. L., Cerrutti, P., Galvagno, M. (2013). Bacterial Cellulose fromsimple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21(2), 545-554.
  • Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187-200.
  • Wee, Y.J., Kim, S.Y., Yoon, S.D., Ryu, H.W. (2011). Isolation and characterization of a bacterial celluloseproducing bacterium derived from the persimmon vinegar. Afr. J. Biotechnol. 10(72): 16267-16276.
  • Yamada, Y. (2000). Transfer of Acetobacter oboediens and Acetobacter intermedius to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int. J. Syst. Evol. Microbiol. 50:2225–2227.
  • Yamanaka, S. ve Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose 7(3):213-225.
  • Yang, C.M., Chen C.Y. (2005). Synthesis, characterization and properties of polyanilines containing transition metal ions. Synth. Met. 153:133-136.
  • Yang, G., Xie, J., Hong, F., Cao, Z., Yang, X. (2012). Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohyd. Polym 87: 839– 845.
  • Zeng, X., Small, D.P., Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr. Polym. 85: 506– 513.
APA GÜZEL M, AKPINAR O (2017). KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. , 620 - 633.
Chicago GÜZEL MELIH,AKPINAR OZLEM KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. (2017): 620 - 633.
MLA GÜZEL MELIH,AKPINAR OZLEM KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. , 2017, ss.620 - 633.
AMA GÜZEL M,AKPINAR O KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. . 2017; 620 - 633.
Vancouver GÜZEL M,AKPINAR O KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. . 2017; 620 - 633.
IEEE GÜZEL M,AKPINAR O "KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU." , ss.620 - 633, 2017.
ISNAD GÜZEL, MELIH - AKPINAR, OZLEM. "KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU". (2017), 620-633.
APA GÜZEL M, AKPINAR O (2017). KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. GIDA, 42(5), 620 - 633.
Chicago GÜZEL MELIH,AKPINAR OZLEM KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. GIDA 42, no.5 (2017): 620 - 633.
MLA GÜZEL MELIH,AKPINAR OZLEM KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. GIDA, vol.42, no.5, 2017, ss.620 - 633.
AMA GÜZEL M,AKPINAR O KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. GIDA. 2017; 42(5): 620 - 633.
Vancouver GÜZEL M,AKPINAR O KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. GIDA. 2017; 42(5): 620 - 633.
IEEE GÜZEL M,AKPINAR O "KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU." GIDA, 42, ss.620 - 633, 2017.
ISNAD GÜZEL, MELIH - AKPINAR, OZLEM. "KOMAGATAEIBACTER HANSENII GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU". GIDA 42/5 (2017), 620-633.