Yıl: 2018 Cilt: 2 Sayı: 2 Sayfa Aralığı: 94 - 101 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez

Öz:
Diabetik retinopatinin (DR) patogenezi vasküler, inflamatuar ve nöronal mekanizmaları içeren karmaşık bir yapıdadır. Diabet retinada metabolik ve fizyolojik anomalilere neden olur ancak bunların diyabetik retinopatinin bilinen bulgularının gelişimine ne kadar katkısı olduğu aşikar değildir. Anjiyogenez ve inflamasyonun hastalığın patogenezi ile ilişkili olduğu gösterilmiştir. Hiperglisemi ve hipoksi tarafından tetiklenen moleküler mediatörler ve beraberindeki metabolik yolaklar doğrudan endotel hücrelerine etki ederek artmış vasküler geçirgenlik, endotel hücreleri arasındaki bağlantıların bozulması, lökostaz ve sonunda diyabetik maküler ödeme (DMÖ) neden olabilir. Moleküler mediatörler ve matabolik yolaklar arasındaki etkileşim, sinyal iletimi ve geri besleme mekanizmaları oldukça karmaşıktır ve tam olarak anlaşılamamıştır. Bu derlemede DR ve DMÖ gelişiminde rol oynayan mekanizmalar mikrovasküler ve moleküler seviyede ele alınmıştır
Anahtar Kelime:

Konular: Cerrahi

Pathogenesis of Diabetic Retinopathy and Diabetic Macular Edema

Öz:
The pathogenesis of diabetic retinopathy (DR) is complex and several vascular, inflammatory and neuronal mechanisms are involved. Diabetes causes a number of metabolic and physiologic abnormalities in the retina, but which of these abnormalities contribute to recognized features of DR is less clear. Angiogenesis and inflammation have been shown to be involved in the pathogenesis of this disease. Molecular mediators, acting in conjunction with metabolic pathways, which are all stimulated in part by the hyperglycaemia and hypoxia, can have a direct endothelial effect leading to hyperpermeability, disruption of vascular endothelial cell junctions, leukostasis and ultimately diabetic macular edema (DME). The interactions, signalling events and feedback loops between the various molecular mediators and metabolic pathways are complicated and are not completely understood. The underlying mechanisms of DR and DME, on both microvascular and molecular levels, are discussed in this review
Anahtar Kelime:

Konular: Cerrahi
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Bibliyografik
  • 1- Ling R, Ramsewak V, Taylor D, Jacob J. Longitudinal study of a cohort of people screened by the Exeter Diabetic Retinopathy Programme. Eye(Lond). 2002;16(2):140-5.
  • 2- Lutty GA. Effects of diabetes on the eye. Invest Ophthalmol Vis Sci. 2013;54(14):81-7.
  • 3- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-86.
  • 4- Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902-16.
  • 5- Klein, R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18(2):258-68.
  • 6- Doganay S, Evereklioglu C, Er H, Türköz Y, Sevinç A, Mehmet N, Savli H. Comparison of serum NO, TNF-alpha, IL-1beta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye (Lond). 2002;16(2):163-70.
  • 7- Kastelan S, Tomić M, Salopek-Rabatić J, Pavan J, Lukenda A, Gotovac M, et al. The association between the HLA system and retinopathy development in patients with type 1 diabetes mellitus. Coll Antropol. 2013;37 Suppl 1:65-70.
  • 8- Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol. 2002;86(4):363-5.
  • 9- Tomić, M, Ljubić S, Kastelan S. The role of inflammation and endothelial dysfunction in the pathogenesis of diabetic retinopathy. Coll Antropol. 2013;37 Suppl 1:51-7.
  • 10- Gologorsky D, Thanos A, Vavvas D. Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Mediators Inflamm 2012. 2012;629452.
  • 11- Kaštelan S, Tomić M, Antunica AG, Rabatić JS, Ljubić S. Inflammation and pharmacological treatment in diabetic retinopathy. Mediators Inflamm 2013. 2013;213130.
  • 12- Rangasamy S, McGuire PG, Nitta CF, Monickaraj F, Oruganti SR, Das A. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One. 2014;9(10):e108508.
  • 13- Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res. 2015;2015:582060.
  • 14- Perez, VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 2015;36(6):354-63.
  • 15- Sasongko MB, Wong TY, Jenkins AJ, Nguyen TT, Shaw JE, Wang JJ. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet Med. 2015;32(5):686-91.
  • 16- Klein R, Klein BE, Moss SE, Wong TY, Hubbard L, Cruickshanks KJ, et al. Retinal vascular abnormalities in persons with type 1 diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVIII. Ophthalmology. 2003;110(11):2118-25.
  • 17- Patel V, Rassam S, Newsom R, Wiek J, Kohner E. Retinal blood flow in diabetic retinopathy. BMJ. 1992;305(6855):678-83.
  • 18- Kuwabara T, Cogan D. Retinal vascular patterns. Arch Opthalmol. 1963;69:114-24
  • 19- Orlidge A, D’Amore PA. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol. 1987;105(3):1455-62.
  • 20- Stitt AW, Gardiner TA, Archer DB. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol. 1995;79(4):362-67.
  • 21- Akagi Y, Kador PF, Kuwabara T, Kinoshita JH. Aldose reductase localization in human retinal mural cells. Invest Ophthalmol Vis Sci. 1983;24(11):1516-19
  • 22- Lindahl P, Johansson BR, Levéen P, Betzholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242- 245
  • 23- Gardiner TA, Archer DB, Curtis TM, Stitt AW. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis. Microcirculation. 2007;14(1):25-38.
  • 24- Robison WG Jr, Kador PF, Kinoshita JH. Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science. 1983;221(4616):1177-9
  • 25- Kohner EM, Henkind P. Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am J Ophthalmol. 1970;69(3):403-14.
  • 26- Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19-48.
  • 27- Gardner TW. Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy. Trans Am Ophthalmol Soc. 1995;93:583-621
  • 28- Yamagishi S, Matsui T. Advanced glycation end products(AGEs), oxidative stress and diabetic retinopathy. Current Pharm Biotechnol. 2011;12(3):362- 8.
  • 29- Knels L, Worm M, Wendel M, Roehlecke C, Kniep E, Funk RH. Effects of advanced glycation end products-inductor glyoxal and hydrogen peroxide as oxidative stress factors on rat retinal organ cultures and neuroprotection by UK-14,304. J Neurochem. 2008;106(4):1876-87.
  • 30- Barile GR, Pachydaki SI, Tari SR, Lee SE, Donmoyer CM, Ma W, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2005;46(8):2916–24.
  • 31- Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes. 2003;52(2):506–11.
  • 32- Sun W, Oates PJ, Coutcher JB, Gerhardinger C, Lorenzi M. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes. 2006;55(10):2757–62.
  • 33- Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol. 1990;108(9):1234-44.
  • 34- Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47(6):859-66.
  • 35- Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways ofhyperglycaemic damage. Nature. 2000;404(6779):787-90
  • 36- Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci. 2006;47(11):5106-15.
  • 37- Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227-39.
  • 38- Nakamura M, Barber AJ, Antonetti DA, LaNoue KF, Robinson KA, Buse MG, et al. Excessive hexosamines block the neuroprotective effect of insülin and induce apoptosis in retinal neurons. J Biol Chem. 2001;276(47):43748-55.
  • 39- Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu M, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol. 2009;175:2676–85.
  • 40- Kowluru RA, Odenbach S. Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci. 2004;45(11):4161-66.
  • 41- Zheng L, Kern TS. In vivo animal models of diabetic retinopathy. Hammes H-P, Porta M (eds), Experimental Approaches to Diabetic Retinopathy. Basel, Karger, 2010;42-60.
  • 42- Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450-2.
  • 43- Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067-72.
  • 44- Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the developmentof type 2 diabetes. Diabetes. 2002;51(2):455-61.
  • 45- Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517-26
  • 46- Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control inpatients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152(6):346-57.
  • 47- Powell ED, Field RA. Diabetic retinopathy and rheumatoid arthritis. Lancet. 1964;2(7349):17-8.
  • 48- dell’Omo R, Semeraro F, Bamonte G, Cifariello F, Romano MR, Costagliola C. Vitreous mediators in retinal hypoxic diseases. Mediators of Inflamm. 2013;2013:935301.
  • 49- Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991;139(1):81-100.
  • 50- He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res. 2010;87(2):281-90.
  • 51- Joussen AM, Poulaki V, Mitsiades N, Cai WY, Suzuma I, Pak J, et al. Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. 2003;17(1):76-8.
  • 52- Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol. 1996;135(2):497-510.
  • 53- McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol. 1995;147(3):642-53
  • 54- Song H, Wang L, Hui Y. Expression of CD18 on the neutrophils of patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2007;245(1):24-31
  • 55- Barouch FC, Miyamoto K, Allport JR, Fujita K, Bursell SE, Aiello LP, et al. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci. 2000;41(5):1153-58.
  • 56- Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA. 1999;96(19):10836-41.
  • 57- Lutty GA, Cao J, McLeod DC. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol. 1997; 151(3):707-14.
  • 58- Yamashiro K, Tsujikawa A, Ishida S, Usui T, Kaji Y, Honda Y, et al. Platelets accumulate in the diabetic retinal vasculature following endothelial death and suppress blood–retinal barrier breakdown. Am J Pathol. 2003;163(1):253-9
  • 59- Gaudry M, Brégerie O, Andrieu V, El Benna J, Pocidalo MA, Hakim J. Intracellular pool of vascular endothelial growthfactor in human neutrophils. Blood. 1997;90(10):4153-61
  • 60- Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol. 2000;156(5):1733-39.
  • 61- Kim YH, Choi MY, Kim YS, Park CH, Lee JH, Chung IY, et al. Triamcinolone acetonide protects the rat retina from STZ-induced acute inflammation and early vascular leakage. Life Sci. 2007;81(14):1167-73.
  • 62- Brooks HL Jr, Caballero S Jr, Newell CK, Steinmetz RL, Watson D, Segal MS, et al. Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol. 2004;122(12):1801-7.
  • 63- Yoshimura T, Sonoda K-H, Sugahara M, Mochizuki Y, Enaida H, Oshima Y. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4(12):e8158.
  • 64- Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2005;243(1):3-8.
  • 65- Sohn HJ, Han DH, Kim IT, Oh IK, Kim KH, Lee DY, et al. Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema. Am J Ophthalmol. 2011;152(4):686-94.
  • 66- Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmology. 2002;133(1):70-7.
  • 67- Funatsu H, Yamashita H, Noma H, Shimizu E, Mimura T, Hori S. Predic-tion of macular edema exacerbation after phacoemulsification in patients with nonproliferative diabetic retinopathy. J Cataract Refract Surg. 2002;28(8):1355- 63.
  • 68- Roh MI, Kim HS, Song JH, Lim JB, Kwon OW. Effect of intravitreal bevacizumab injection on aqueous humor cytokine levels in clinically significant macular edema. Ophthalmology. 2009;116(1):80-6.
  • 69- Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Otsuka H, Sonoda Y. Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema. Retina. 2014;34(4):741-8.
  • 70- Shukla D, Behera UC, Chakraborty S, Mahalakshmi R, Prasad NM. Serous macular detachment as a predictor of resolution of macular edema with intravitreal triamcinolone injection. Ophthalmic Surg Lasers Imaging. 2009;40(2):115-9.
  • 71- Shahar J, Avery RL, Heilweil G, Barak A, Zemel E, Lewis GP, et al. Electrophysiologic and retinal penetration studies followingintravitreal injection of bevacuzumab (Avastin). Retina. 2006;26(3):262-9.
  • 72- Tesch GH. Role of macrophages in complications of type 2 diabetes. Clin ExpPharmacol Physiol. 2007;34(10):1016-9.
  • 73- Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009;116(1):73–9.
  • 74- Mackenzie F, Ruhrberg C. Diverse roles for VEGF-A in the nervous system. Development. 2012;139(8):1371-80.
  • 75- Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333-40.
  • 76- Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996;2(9):992-7.
  • 77- Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Eng J Med. 1994;331(22):1480-7.
  • 78- Shinoda K, Ishida S, Kawashima S, Wakabayashi T, Matsuzaki T, Takayama M, et al. Comparison of the levels of hepatocyte growth factor and vascular endothelial growth factor in aqueous fluid and serum with grades of retinopathy in patients with diabetes mellitus. Br J Ophthalmol. 1999;83(7):834-7.
  • 79- Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes. 1999;48(10):1899-906
  • 80- Mitamura Y, Tashimo A, Nakamura Y, Tagawa H, Ohtsuka K, Mizue Y, et al. Vitreous levels of placenta growth factor and vascular endothelial growth factor in patients with proliferative. Diabetes Care. 2002;25(12):2352.
  • 81- Ashton N, Cunha-Vaz JG. Effect of histamine on the permeability of the ocular vessels. Arch ophthalmol. 1965,73:211-23.
  • 82- Campbell M, Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol. 2012;763:70-84.
  • 83- González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):1-44.
  • 84- Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, et al. Complex phenotype of mice lacking occludin, a component of tightjunction strands. Mol Biol Cell. 2000;11(12):4131-42.
  • 85- Pan L, Chen J, Yu J, Yu H, Zhang M. The structure of the PDZ3-SH3- GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem. 2011;286(46):40069-74.
  • 86- Bhagat N, Grigorian RA, Tutela A, Zarbin MA. Diabetic Macular Edema: Pathogenesis and Treatment. Surv Ophthalmol. 2009;54(1):1-32.
  • 87- Hirata C, Nakano K, Nakamura N, Kitagawa Y, Shigeta H, Hasegawa G, et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun. 1997;236(3):712-5.
  • 88- Eichler W, Yafai Y, Keller T, Wiedemann P, Reichenbach A. PEDF derived from glial Muller cells: a possible regulator of retinal angiogenesis. Exp Cell Res. 2004;299(1):68-78.
  • 89- Vinores SA, Xiao WH, Shen J, Campochiaro PA: TNF-alpha is critical for ischemia-induced leukostasis, but not retinal neovascularization nor VEGF-induced leakage. J Neuroimmunol. 2007;182(1-2):73-9.
  • 90- Matsuoka M, Ogata N, Minamino K, Matsumura M. Leukostasis and pigment epithelium-derived factor in rat models of diabetic retinopathy. Mol Vis. 2007;13:1058-65.
  • 91- Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occludens. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999274(33):23463-7.
  • 92- Steward, MW. Pathophysiology of diabetic retinopathy. In: Browning DJ, Diabetic retinopathy: evidence based management. Springer Science and Business Media, Heidelberg, London 2010;8-11.
  • 93- Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397-424.
  • 94- Uckermann O, Kutzera F, Wolf A, Pannicke T, Reichenbach A, Wiedemann P, et al. The glucocorticoid triamcinolone acetonide inhibits osmotic swelling of retinal glial cells via stimulation of endogenous adenosine signaling. J Pharmacol Exp Ther. 2005;315(3):1036-45.
  • 95- Pannicke T, Iandiev I, Wurm A, Uckermann O, vom Hagen F, Reichenbach A, et al. Diabetes alters osmotic swelling and membrane characteristics of glial cells in rat retina. Diabetes. 2006;55(3):633-9.
APA KERİMOĞLU H, TÜRK H (2018). Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. , 94 - 101.
Chicago KERİMOĞLU Hürkan,TÜRK Hüseyin Buğra Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. (2018): 94 - 101.
MLA KERİMOĞLU Hürkan,TÜRK Hüseyin Buğra Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. , 2018, ss.94 - 101.
AMA KERİMOĞLU H,TÜRK H Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. . 2018; 94 - 101.
Vancouver KERİMOĞLU H,TÜRK H Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. . 2018; 94 - 101.
IEEE KERİMOĞLU H,TÜRK H "Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez." , ss.94 - 101, 2018.
ISNAD KERİMOĞLU, Hürkan - TÜRK, Hüseyin Buğra. "Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez". (2018), 94-101.
APA KERİMOĞLU H, TÜRK H (2018). Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. Güncel Retina Dergisi, 2(2), 94 - 101.
Chicago KERİMOĞLU Hürkan,TÜRK Hüseyin Buğra Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. Güncel Retina Dergisi 2, no.2 (2018): 94 - 101.
MLA KERİMOĞLU Hürkan,TÜRK Hüseyin Buğra Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. Güncel Retina Dergisi, vol.2, no.2, 2018, ss.94 - 101.
AMA KERİMOĞLU H,TÜRK H Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. Güncel Retina Dergisi. 2018; 2(2): 94 - 101.
Vancouver KERİMOĞLU H,TÜRK H Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez. Güncel Retina Dergisi. 2018; 2(2): 94 - 101.
IEEE KERİMOĞLU H,TÜRK H "Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez." Güncel Retina Dergisi, 2, ss.94 - 101, 2018.
ISNAD KERİMOĞLU, Hürkan - TÜRK, Hüseyin Buğra. "Diyabetik Retinopati ve Diyabetik Maküla Ödeminde Patogenez". Güncel Retina Dergisi 2/2 (2018), 94-101.