Yıl: 2017 Cilt: 6 Sayı: 2 Sayfa Aralığı: 93 - 107 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı

Öz:
Nitrat yeraltı ve yüzeysel sulardaki kirletici unsurlardan biridir ve bu nedenle nitrat indirgenmesinde şimdiye kadar birçok farklı proses araştırılmıştır. Biyotik ve abiyotik olarak gerçekleştirilen nitrat indirgenmesinde çok çeşitli alternatifler mevcuttur. Bir diğer yönden nano ölçekli sıfır değerlikli demir (nZVI) atıksulardaki birçok kirleticinin giderimi için kullanılmaktadır. nZVI elektron verici özelliğinden dolayı daha çok kirleticilerin indirgenme çalışmalarında yer almıştır. Literatürde yer alan çalışmalar biyotik ve abiyotik indirgenmenin arka arkaya gerçekleştiği nZVI ile ototrofik denitrifikasyonun, bakteri-nZVI iş birliğinden dolayı diğer yöntemlere göre daha avantajlı olduğunu göstermektedir. Bu çalışmada da nitrat indirgenmesinde nZVI kullanımının rolü, avantajları ve indirgenme mekanizması, yapılan araştırmalardan derlenerek sunulmuştur
Anahtar Kelime:

Use of Nanoscale Zero Valent Iron (nZVI) in Nitrate Reduction

Öz:
Nitrate is one of the pollutants in ground and surface waters and many different processes have been investigated up to now for nitrate reduction. There are various alternatives in biotic and abiotic nitrate reductions. On the other hand, nanoscale zero valent iron (nZVI) is used for the removal of many pollutants in wastewater. nZVI is nature electron donor, this leads its usage in many pollutants reduction. The researches in the literature show that autotrophic denitrification with nZVI, which is performed successively of biotic and abiotic reduction, is more advantageous than other methods due to the bacteria nZVI cooperation. In this study, the role of nZVI, the advantages and the mechanism of reduction in the reduction of nitrate, are presented by reviewing previous studies
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Till B.A., Weathers L.J., Alvarez P.J.J. 1998. Fe(0)-Supported Autotrophic Denitrification, Environmental Science Technology, 32 (5): 634-639.
  • 2. Mansell B.O., Schroeder E.D. 2002. Hydrogenotrophic Denitrification in Amicroporous Membrane Bioreactor, Water Research, 36 (19): 4683-4690.
  • 3. Haring V., Conrad R. 1991. Kinetics of H2 Oxidation in Respiring and Denitrifying Paracoccusö Denitrificans, FEMS Microbiol Letters, 78 (2-3): 259-264.
  • 4. Liessens J., Vanbrabant J., Vos P., Kersters K., Verstraete W. 1992. Mixed Culture Hydrogenotrophic Nitrate Reduction in Drinking Water, Microbial Ecology, 24 (3): 271-290.
  • 5. Smith R.L., Ceazan M.L., Brooks M.H. 1994. Autotrophic, Hydrogen-Oxidizing, Denitrifying Bacteria in Groundwater, Potential Agents for Bioremediation of Nitrate Contamination, Applied and Environmental Microbiology, 60 (6): 1949-1955.
  • 6. Ho C.M., Tseng S.K., Chang Y.J. 2001. Autotrophic Denitrification Via A Novel MembraneAttached Biofilm Reactor, Letters in Applied Microbiology, 33 (3): 201-205.
  • 7. Smith R.L., Buckwalter S.P., Repert D.A., Miller D.N. 2005. Small-Scale, Hydrogen-Oxidizing Denitrifying Bioreactor for Treatment of Nitrate-Contaminated Drinking Water, Water Research, 39 (10): 2014-2023.
  • 8. Vasiliadou I.A., Pavlou S., Vayenas D.V. 2006. A Kinetic Study of Hydrogenotrophic Denitrification, Process Biochemistry, 41 (6): 1401-1408.
  • 9. Schnobrich M.R., Chaplin B.P., Semmens M.J., Novak P.J. 2007. Stimulating Hydrogenotrophic Denitrification in Simulated Groundwater Containing High Dissolved Oxygen and Nitrate Concentrations, Water Research, 41 (9): 1869-1876.
  • 10. McCarty P.L. 1972. Stoichiometry of Biological Reactions, Proceedings of The International Conference Towards A Unified Concept of Biological Waste Treatment Design, Atlanta.
  • 11. Kurt M., Dunn I.J., Bourne J.R. 1987. Biological Denitrification of Drinking Water Using Autotrophic Organisms with H2 in A Fluidized Bed Biofilm Reactor, Biotechnology and Bioengineering, 29 (4): 493-501.
  • 12. Claus G., Kutzner H.J. 1985a. Autotrophic Denitrification by Thiobacillus Denitrificans in A Packed Bed Reactor, Applied Microbiology Biotechnology, 22 (4): 289- 296.
  • 13. Claus G., Kutzner H.J. 1985b. Physiology and Kinetics of Autotrophic Denitrification by Thiobacillus Denitrificans, Applied Microbiology Biotechnology, 22 (4): 283-288.
  • 14. Kleerebezem R., Mendezà, R. 2002. Autotrophic Dentrification for Combined Hydrogen Sulfide Removal From Biogas and Post Dentrification, Water Science Technology, 45 (10): 349-356.
  • 15. Gamble T.N., Betlach M.R., Tiedje J.M. 1977. Numerically Dominant Denitrifying Bacteria From World Soils, Applied Environmental Microbiology, 33 (4): 926-939.
  • 16. Chang C.C., Tseng S.K., Huang H.K. 1999. Hydrogenotrophic Denitrification with Immobilized Alcaligenes Eutrophus for Drinking Water Treatment, Bioresource Technology, 69 (1): 53-58.
  • 17. Biswas S., Bose P. 2005. Zero-Valent Iron-Assisted Autotrophic Denitrification, Journal Environmental Engineering, 131 (8): 1212-1220.
  • 18. Kielemoes J., De Boever P., Verstraete W. 2000 Influence of Denitrification on The Corrosion of Iron and Stainless Steel Powder, Environmental Science Technology, 34 (4): 663-671.
  • 19. Yu X.Y., Amrheinn C., Deshusses M.A., Matsumoto M.R. 2006. Perchlorate Reduction by Autotrophic Bacteria in The Presence of Zero-Valent Iron, Environmental Science Technology, 40 (4): 1328-1334.
  • 20. An Y., Li T., Jin Z., Dong M., Li Q., Wang S. 2009. Decreasing Ammonium Generation Using Hydrogenotrophic Bacteria in The Process of Nitrate Reduction by Nanoscale Zero-Valent Iron, Science of The Total Environment, 407 (21): 5465-5470.
  • 21. Shin K.H., Cha D.K. 2008. Microbial Reduction of Nitrate in The Presence of Nanoscale ZeroValent Iron, Chemosphere, 72 (2): 257-262.
  • 22. Huang C.P., Wang H.W., Chiu C.P. 1998. Nitrate Reduction by Metallic Iron, Water Research, 32 (8): 2257-2264.
  • 23. Zhang W.X. 2003. Nanoscale Iron Particles for Environmental Remediation: An Overview, Journal of Nanopartical Research, 5 (3): 323-332.
  • 24. Zhang W.X. 2005. Nanoscale Environmental Science and Technology: Challenges and Opportunities, Environmental Science Technology, 39: 94A-95A.
  • 25. Gotpagar J.K., Grulke E.A., Tsang T., Bhattacharyya D. 1997. Reductive Dehalogenation of Trichloroethylene Using Zero-Valent Iron, Environmental Progress and Sustainable Energy, 16 (2): 137-143.
  • 26. Li F., Vipulanandan C., Mohanty K.K. 2003. Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223 (1-3): 103-112.
  • 27. Crane R.A., Scott T.B. 2012. Nanoscale Zero-Valent Iron: Future Prospects for An Emerging Water Treatment Technology, Journal of Hazardous Materials, 211-212: 112-125.
  • 28. Wang C.B., Zhang W.X. 1997. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs, 31 (7): 2154-2156.
  • 29. You Y., Han J., Chiu P.C., Jin Y. 2005. Removal and Inactivation of Waterborne Viruses Using Zero Valent Iron, Environmental Science and Technology, 39 (23): 9263-9269.
  • 30. Phenrat T., Long T.C., Lowry G.V., Veronesi B. 2009. Partial Oxidation (“Aging”) and Surface Modification Decrease The Toxicity of Nanosized Zerovalent Iron, Environmental Science and Technology, 43 (1): 195-200.
  • 31. Li X.Q., Zhang W. 2006. Iron Nanoparticles: The Core-Shell Structure and Unique Properties for Ni(II) Sequestration, Langmuir, 22 (10): 4638-4642.
  • 32. Thiruvenkatachari R., Vigneswaran S., Naidu R. 2007. Permeable Reactive Barrier for Groundwater Remediation, Journal of Industrial and Engineering Chemistry, 14 (2): 145-156.
  • 33. Li S., Wang W., Liang F., Zhang W. 2017. Heavy Metal Removal Using Nanoscale Zero-Valent Iron (nZVI): Theoryand Application, Journal of Hazardous Materials, 322 (A): 163-171.
  • 34. Dutta S., Saha R., Kalita H., Bezbaruah A.N. 2016. Rapid Reductive Degradation of Azo and Anthraquinone Dyes by Nanoscale Zero-Valent Iron, Environmental Technology & Innovation, 5:176-187.
  • 35. Wang W., Hua Y., Li S., Yan W., Zhang W. 2016. Removal of Pb(II) and Zn(II) Using Lime and Nanoscale Zero-Valent Iron (nZVI): A Comparative Study, Chemical Engineering and Journal, 304: 79-88.
  • 36. Zhang J., Hao Z., Zhang Z., Yang Y., Xu X. 2010. Kinetics of Nitrate Reductive Denitrification by Nanoscale Zero-Valent Iron, Process Safety and Environmental Protection, 88 (6): 439-445.
  • 37. Ghafari S., Hasan M., Aroua M.K. 2008. Bio-Electrochemical Removal of Nitrate From Water and Wastewater-A Review, Bioresource Technology, 99 (10): 3965-3974.
  • 38. Bhatnagar A., Sillanpää M. 2011. A Review of Emerging Adsorbents for Nitrate Removal From Water, Chemical Engineering Journal, 168 (2): 493-504.
  • 39. Shrimali M., Singh K.P. 2011. New Methods of Nitrate Removal From Water, Environmental Pollution, 112 (3): 351-359.
  • 40. Zhao Y., Feng C., Wang Q., Yang Y., Zhang Z., Sugiura N. 2011. Nitrate Removal From Groundwater by Cooperating Heterotrophic With Autotrophic Denitrification in A BiofilmElectrode Reactor, Journals of Hazardous Materials, 192 (3): 1033-1039.
  • 41. Koenig A., Zhang T., Liu L.H., Fang H.H. 2005. Microbial Community and Biochemistry Process in Autosulfurotrophic Denitrifying Biofilm, Chemosphere, 58 (8): 1041-1047.
  • 42. Van H.M., Loosdrecht M.C.M., Heijnen J.J. 1999. Modelling Biological Phosphorus and Nitrogen Removal in A Full Scale Activated Sludge Process, Water Research, 33 (16): 3459- 3468.
  • 43. Show K.Y., Lee D.J., Pan X. 2013. Simultaneous Biological Removal of Nitrogen-Sulfur-Carbon: Recent Advances and Challenges, Biotechnology Advances, 31 (4): 409-420.
  • 44. Hamlin H. J., Michaels J. T., Beaulaton C. M., Graham W.F., Dutt W., Steinbach P., Losordo T.M., Schrader K.K., Main K.L. 2008. Comparing Denitrification Rates and Carbon Sources in Commercial Scale up Flow Denitrification Biologicalfilters in Aquaculture, Aquacultural Engineering, 38 (2): 79-92.
  • 45. Van der Hoek J.P., Klapwijk A. 1988. The Use of A Nitrate Selective Resin in The Combined Ion Exchange/Biological Denitrification Process For Nitrate Removal From Groundwater, Water Supply, 6: 57-62.
  • 46. Kim S., Jung H., Kim K.S., Kim I.S. 2004. Treatment of High Nitrate Containing Wastewaters by Sequential Heterotrophic and Autotrophic Denitrification, Journal of Environmental Engineering, 130 (12): 1475-1480.
  • 47. Killingstad M.W., Widdowson M.A., Smith R.L. 2002. Modeling Enhanced in Situ Denitrification in Groundwater, Journal of Environmental Engineering, 128 (6): 491-504.
  • 48. Kim Y.S., Nakano K., Lee T.J., Kanchanatawee S., Matsumura M. 2002. On-Site Nitrate Removal of Groundwater by An Immobilized Psychrophilic Denitrifier Using Soluble Starch As A Carbon Source, Journal of Bioscience and Bioengineering, 93 (3): 303-308.
  • 49. Szekeres S., Kiss I., Kalman M., Soares M.I.M. 2002. Microbial Population in A HydrogenDependent Denitrification Reactor, Water Research, 36 (16): 4088-4094.
  • 50. Feleke Z., Sakakibara Y. 2002. A Bio-Electrochemical Reactor Coupled with Adsorber for The Removal of Nitrate and Inhibitory Pesticide, Water Research, 36 (12): 3092-3102.
  • 51. Galvez J.M., Gomez M.A., Hontoria E., Gonzalez-Lopez J. 2003. Influence of Hydraulic Loading and Air Flowrate on Urban Wastewater Nitrogen Removal with a Submerged Fixed-Film Reactor, Journal Hazardous Materials, 101 (2): 219-229.
  • 52. Gomez M.A., Galvez J.M., Hontoria E., Gonzalez-Lopez J. 2003. Influence of Concentration on Biofilm Bacterial Composition From A Denitrifying Submerged Filter Used for Contaminated Groundwater, Journal Bioscience and Bioengeneering, 95 (3): 245-251.
  • 53. Rijn J.V., Tal Y., Schreier H.J. 2006. Denitrification in Recirculating Systems: Theory and Applications, Aquacultural Engineering, 34 (3): 364-376.
  • 54. Chiu Y.C., Chung M.S. 2003. Determination of Optimal COD/Nitrate Ratio for Biological Denitrification, International Biodeterioration & Biodegradation, 51 (1): 43-49.
  • 55. Beiki M.R., Yazdian F., Rasekh B., Rashedi H., Rostami A.D. 2016. Effect of Metal Nanoparticles on Biological Denitrification Process: A Review, Journal of Applied Biotechnology Reports, 3 (1): 353-358.
  • 56. Gayle B.P., Boardman G. D., Sherrard J.H., Benoit R.E. 1989. Biological Denitrification of Water, Journal of Environmental Engineering, 115 (5): 930-943.
  • 57. An Y., Li T., Jin Z., Dong M., Li Q. 2010. Nitrate Degradation and Kinetic A nalysis of The Denitrification System Composed of Iron Nanoparticles and Hydrogenotrophic Bacteria, Desalination, 252 (1-3): 71-74.
  • 58. Xie Y., Dong H., Zeng G., Tang L., Jiang Z., Zhang C., Deng J., Zhang L., Zhang Y. 2017. The Interactions Between Nanoscale Zero-Valent Iron and Microbes in The Subsurface Environment: A Review, Journal of Hazardous Materials, 321 (5): 390-407.
  • 59. Prosnansky M., Sakakibarab Y., Kuroda M. 2002. High-Rate Denitrification and SS Rejection by Biofilm-Electrode Reactor (BER) Combined with Microfiltration, Water Resource, 36 (19): 4801-4810.
  • 60. Barnes R.J., Van der Gast C.J., Riba O., Lehtivirta L.E., Prosser J.I., Dobson P.J., Thomphson I.P. 2010. The Impact of Zero-Valent Iron Nanoparticles on A River Water Bacterial Community, Journal Hazardous Materials, 184 (1-3): 73-80.
  • 61. Liu Y., Li S., Chen Z., Megharaj M., Naidu R. 2014. Influence of Zero-Valent Iron Nanoparticles on Nitrate Removal by Paracoccus sp, Chemosphere, 108: 426-432.
  • 62. An Y., Dong Q., Zhang K. 2014. Bioinhibitory Effect of Hydrogenotrophic Bacteria on Nitrate Reduction by Nanoscale Zero-Valent Iron, Chemosphere, 103: 86-91.
  • 63. Dong M.Y., Wang X., Huang F., Jin F.H., Li T.L. 2012. Toxicity of Fe0 Nanoparticles on the Denitrifying Bacteria-Alcaligenes Eutrophus, Advanced Materials Research, 343-344 (3): 889- 894.
  • 64. Chen S.S., Hsu H.D., Li C.W. 2004. A New Method to Produce Nanoscale Iron for Nitrate Removal, Journal of Nanoparticle Research, 6 (6): 639-647.
  • 65. Choe S., Chang Y.Y., Hwang K.Y., Khim J. 2000. Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron, Chemosphere, 41 (8): 1307-1311.
  • 66. Chi I., Zhang S.T., Lu X., Dong L.H., Yao S.L. 2004. Chemical Reduction of Nitrate by Metallic Iron, Journal of Water Supply: Research and Technology-AQUA, 53 (1): 37-41.
  • 67. Huang Y.H., Zhang T.C. 2002. Kinetics of Nitrate Reduction by Iron at Near Neutral pH, Journal of Environmental Engineering, 128 (7): 604-611.
  • 68. Hu H.Y., Goto N., Fujie K. 2001. Effect of pH on The Reduction of Nitrite in Water by Metallic Iron, Water Research, 35 (11): 2789-2793.
  • 69. Westerhoff P., James J. 2003. Nitrate Removal in Zero-Valent Iron Packed Columns, Water Research, 37 (8): 1818-1830.
  • 70. Sciliano A. 2015. Use of Nanoscale Zero-Valent Iron (NZVI) Particles for Chemical Denitrification Under Different Operating Conditions, Metals, 5 (3): 1507-1519.
  • 71. Ziajahromi S., Khanizadeh M., Khiadani M. 2013. Experimental Evaluation of Nitrate Reduction From Water Using Synthesis Nanoscale Zero-Valent Iron (NZVI) Under Aerobic Conditions, Middle-East Journal of Science Research, 16 (2): 205-209.
  • 72. Kim M.S., Kwak D. H. 2014. Treatment Characteristics and Effects of Nanoparticle Zero-Valent Iron (nZVI) Powder on Nitrogen Removal Efficiency for Sewage Treatment, Water Quality Research Journal , 49 (3): 273-284.
  • 73. Lavine B.K., Auslander G., Ritter J. 2001. Polarographic Studies of Zero Valent Iron as A Reductant for Remediation of Nitroaromatics in The Environment, Microchemical Journal, 70 (2): 69-83.
  • 74. Alowitz M.J., Scherer M.M. 2002. Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by Iron Metal, Environmental Science Technology, 36 (3): 299-306.
  • 75. Choe S., Liljestrand H.M., Khim J. 2004. Nitrate Reduction by Zero-Valent Iron Under Different pH Regimes, Applied Geochemistry, 19 (3): 335-342.
  • 76. Matheson L.J., Tratnyek P.G. 1994. Abiotic and Biotic Aspects of Reductive Dechlorination of Chlorinated Solvents by Zerovalent Iron, Preprint of Extended Abstract, Presented at Division of Environmental Chemistry, Am. Chem. Soc., 13 March, San Diego, 720-723.
  • 77. LipczyskaKochany E., Harms S., Milbum R., Sprah G., Nadarajah N. 1994. Degradation of Carbon Tetrachloride in The Presence of Iron and Sulphur Containing Compounds, Chemosphere, 29 (7): 1477-1489.
  • 78. Chen J.L., Al-Abed S.R., Ryan J.A., Li Z. B. 2001. Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron, Journal Hazardous Materials, 83 (3): 243-254.
  • 79. Agrawal A., Tratnyek P. G. 1995. Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal, Environmental Science and Technology, 30 (1): 153-160.
  • 80. Yang G.C.C., Lee H.L. 2005. Chemical Reduction of Nitrate by Nanosized Iron: Kinetics and Pathways, Water Research, 39 (5): 884-894.
  • 81. Ziajahromi S., Mehrdad M. 2012. Nitrate Removal from Water Using Synthesis Nanoscale ZeroValent Iron (NZVI), Journal of International, 7 (5): 939-943.
  • 82. Xu J., Hao Z., Xie C., Lv X., Yang Y., Xu X. 2012. Promotion Effect of Fe2+ and Fe3O4 on Nitrate Reduction Using Zero-Valent Iron, Desalination, 284: 9-13.
  • 83. Park H.S., Park Y.M., Oh S.K, Lee S.J., Choi Y.S., Lee S. H. 2008. Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution, The Korean Institute of Chemical Engineers, 46 (5): 1008-1012.
  • 84. Park H.S., Park Y.M., Yoo K.M., Lee S.H. 2009. Reduction of Nitrate by Resin-Supported Nanoscale Zero-Valent Iron, Water Science and Technology, 59 (11): 2153-2157.
  • 85. Khalil A.M.E., Eljamal O., Jribi S., Matsunaga M. 2016. Promoting Nitrate Reduction Kinetics by Nanoscale Zero Valent Iron in Water via Copper Salt Addition, Chemical Engineering Journal, 287 (1): 367-380.
APA TÜRK H, Hanay Ö (2017). Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. , 93 - 107.
Chicago TÜRK Hande,Hanay Özge Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. (2017): 93 - 107.
MLA TÜRK Hande,Hanay Özge Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. , 2017, ss.93 - 107.
AMA TÜRK H,Hanay Ö Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. . 2017; 93 - 107.
Vancouver TÜRK H,Hanay Ö Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. . 2017; 93 - 107.
IEEE TÜRK H,Hanay Ö "Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı." , ss.93 - 107, 2017.
ISNAD TÜRK, Hande - Hanay, Özge. "Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı". (2017), 93-107.
APA TÜRK H, Hanay Ö (2017). Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6(2), 93 - 107.
Chicago TÜRK Hande,Hanay Özge Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 6, no.2 (2017): 93 - 107.
MLA TÜRK Hande,Hanay Özge Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.6, no.2, 2017, ss.93 - 107.
AMA TÜRK H,Hanay Ö Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2017; 6(2): 93 - 107.
Vancouver TÜRK H,Hanay Ö Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2017; 6(2): 93 - 107.
IEEE TÜRK H,Hanay Ö "Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6, ss.93 - 107, 2017.
ISNAD TÜRK, Hande - Hanay, Özge. "Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 6/2 (2017), 93-107.