Yıl: 2017 Cilt: 19 Sayı: 3 Sayfa Aralığı: 58 - 63 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor

Öz:
ABO3 perovskite ailesinden olan seramik esaslı malzemeler, gaz ortamına bağlı olarak orta sıcaklıklarda (500-800°C) hem proton hem de oksijen iyonu iletkenlita şıma özelliklerinden ve bunların orta sıcaklık katı oksit yakıt pillerinde elektrolit olarak kullanılma potansiyellerinden dolayı ilgi çekmitip proton iletken malzeme sentezlenmiştir. X-ışını difraksiyonu (XRD) ve X-ışını enerji dağılımı spektrometresi (EDXS) karakterizasyon teknikleri kullanılarak toz formundaki malzemenin kristalografik yapısı, faz saflıveri tabanı ile karşılaştırılmış olup, standart perovskite yapısı ile mükemmel uyum göstermiştir. Yüzey alanı ölçümü Brunauer-Emmett-Teller (BET) yöntemi kullanılarak gerçekleştirildi. İletkenlik ölçümü, farklı gaz ortamlarında AC empedansı kullanılarak orta sıcaklık aralığında gerçekleştirildi
Anahtar Kelime:

Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü

Öz:
Ceramic based materials from the ABO3 perovskite family, show both proton and oxide ion conductivity at intermediate temperatures depending on the gaseous environment. Due to these multi-species transport features of them and their potential to be utilised as an electrolyte in solid oxide fuel cells operating at intermediate temperature, there has been lot of research focused on them and their properties. In this study, a perovskite type proton conductor was synthesised by using solid state reaction method. X-ray diffraction (XRD) and Energy dispersive X-ray spectroscopy (EDXS) characterisation techniques were utilised to determine crystal structure, phase purity and the elemental materials composition in powder form. The results were compared with International Centre for Diffraction Data (ICDD) database and displayed excellent match with standard perovskite structure. Also, the surface area measurement was performed via utilising the Brunauer-Emmett-Teller (BET) method. The conductivity measurement was carried out at the intermediate temperature (500-800°C) using AC impedance at different atmospheres
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A. and Tsiakaras, P., BaCeO3: Materials development, properties and application, Progress in Materials Science, 60, 72-129, (2014).
  • [2] Laguna-Bercero, M.A., Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, Journal of Power Sources, 203, 4-16, (2012).
  • [3] Rayment, C. and Sherwin, S., Introduction to fuel cell technology, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, U.S.A., (May 2003).
  • [4] Kilner, J.A. and Burriel, M., Materials for intermediate temperature solid oxide fuel cells, Annual Review of Materials Research, 44, 365-393, (2014)
  • [5] Ormerod, R.M., Solid oxide fuel cells, Chemical Society Reviews, 32, 17-28, (2003).
  • [6] Mahato, N., Banerjee, A., Gupta, A., Omar, S. and Balani, K., Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, 72, 141-337, (2015).
  • [7] Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics, 3–4, 359-363, (1981).
  • [8] Liu, Y., Tan, X. and Li, K., Mixed conducting ceramics for catalytic membrane processing, Catalysis Reviews, 48, 145-198, (2006).
  • [9] Fabbri, E., Pergolesi, D. and Traversa, E., Materials challenges toward protonconducting oxide fuel cells: A critical review, Chemical Society Reviews, 39, 4355-4369, (2010).
  • [10] Norby, T., Protonic defects in oxides and their possible role in high temperature oxidation, Journal of Physics IV France, 03, C9-106, (1993).
  • [11] Bonanos, N., Ellis, B., Knight, K.S. and Mahmood, M.N., Ionic conductivity of gadolinium-doped barium cerate perovskites, Solid State Ionics, 35, 179-188, (1989).
  • [12] Bonanos, N., Knight, K.S. and Ellis, B., Perovskite solid electrolytes: Structure, transport properties and fuel cell applications, Solid State Ionics, 79, 161-170, (1995).
  • [13] Babilo, P., Uda, T. and Haile, S.M., Processing of yttrium-doped barium zirconate for high proton conductivity, Journal of Materials Research, 22, 1322-1330, (2007).
  • [14] Bonanos, N. and Willy Poulsen, F., Considerations of defect equilibria in high temperature proton conducting cerates, Journal of Materials Chemistry, 9, 431- 434, (1999).
  • [15] Takeuchi, K., Loong, C.K., Richardson Jr, J.W., Guan, J., Dorris, S.E. and Balachandran, U., The crystal structures and phase transitions in Y-doped BaCeO3: Their dependence on Y concentration and hydrogen doping, Solid State Ionics, 138, 63-77, (2000).
  • [16] Tauer, T., O'hayre, R. and Medlin, J.W., A theoretical study of the influence of dopant concentration on the hydration properties of yttrium doped barium cerate, Solid State Ionics, 204–205, 27-34, (2011).
  • [17] Sawant, P., Varma, S., Wani, B.N. and Bharadwaj, S.R., Influence of synthesis route on morphology and conduction behavior of BaCe0.8Y0.2O3−δ , Journal of Thermal Analysis and Calorimetry, 107, 189-195, (2012).
  • [18] Tong, J., Clark, D., Bernau, L., Subramaniyan, A. and O'hayre, R., Protonconducting yttrium doped barium cerate ceramics synthesized by a cost effective solid state reactive sintering method, Solid State Ionics, 181, 1486-1498, (2010).
  • [19] Nikodemski, S., Tong, J. and O'hayre, R., Solid state reactive sintering mechanism for proton conducting ceramics, Solid State Ionics, 253, 201-210, (2013).
  • [20] Subramaniyan, A., Tong, J., O'hayre, R.P. and Sammes, N.M., Sintering studies on 20 mol% yttrium doped barium cerate, Journal of the American Ceramic Society, 94, 1800-1804, (2011).
  • [21] Coors, W.G. and Readey, D.W., Proton conductivity measurements in yttrium barium cerate by impedance spectroscopy, Journal of the American Ceramic Society, 85, 2637-2640, (2002).
  • [22] Malavasi, L., Ritter, C. and Chiodelli, G., Correlation between thermal properties, electrical conductivity, and crystal structure in the BaCe0.8Y0.2O2.9 proton conductor, Chemistry of Materials, 20, 2343-2351, (2008).
  • [23] Xia, C., Cai, Y., Wang, B., Afzal, M., Zhang, W., Soltaninazarlou, A. and Zhu, B., Strategy towards cost effective low temperature solid oxide fuel cells: A mixed conductive membrane comprised of natural minerals and perovskite oxide, Journal of Power Sources, 342, 779-786, (2017).
  • [24] W. Grover Coors and Swartzlander, R., Partial conductivity measurements in BaCe0.9Y0.1O3−δ by impedance spectroscopy, Proceedings of the 26th Risø International Symposium on Materials Science Solid State Electrochemistry, 185-196, (2005).
  • [25] Iwahara, H., Technological challenges in the application of proton conducting ceramics, Solid State Ionics, 77, 289-298, (1995).
  • [26] Iwahara, H., Mori, T. and Hibino, T., Electrochemical studies on ionic conduction in Ca-doped BaCeO3, Solid State Ionics, 79, 177-182, (1995).
  • [27] Fabbri, E., Pergolesi, D., D’epifanio, A., Di Bartolomeo, E., Balestrino, G., Licocciaa S. and Traversa, E., Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs), Energy & Environmental Science, 358, 355-359, (2008).
  • [28] Tomita, A., Hibino, T., Suzuki, M. and Sano, M., Proton conduction at the surface of Ydoped BaCeO3 and its application to an air/fuel sensor, Journal of Materials Science, 39, 2493-2497, (2004).
APA AL S (2017). Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. , 58 - 63.
Chicago AL Selgin Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. (2017): 58 - 63.
MLA AL Selgin Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. , 2017, ss.58 - 63.
AMA AL S Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. . 2017; 58 - 63.
Vancouver AL S Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. . 2017; 58 - 63.
IEEE AL S "Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor." , ss.58 - 63, 2017.
ISNAD AL, Selgin. "Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor". (2017), 58-63.
APA AL S (2017). Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 58 - 63.
Chicago AL Selgin Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, no.3 (2017): 58 - 63.
MLA AL Selgin Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.19, no.3, 2017, ss.58 - 63.
AMA AL S Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017; 19(3): 58 - 63.
Vancouver AL S Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017; 19(3): 58 - 63.
IEEE AL S "Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor." Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19, ss.58 - 63, 2017.
ISNAD AL, Selgin. "Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor". Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/3 (2017), 58-63.