ÖMER FARUK KARATAŞ
(Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States of America)
Michael ITTMANN
(Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States of America)
Yıl: 2018Cilt: 4Sayı: 2ISSN: 2149-3189 / 2149-3189Sayfa Aralığı: 79 - 84İngilizce

51 2
MicroRNA-33a levels do not correlate with the expression of its host gene SREBF2 and its isoforms in prostate cancer cell lines
Fen > Temel Bilimler > Biyoloji
Fen > Tıp > Alerji
Fen > Tıp > Anatomi ve Morfoloji
Fen > Tıp > Androloji
Fen > Tıp > Anestezi
Fen > Tıp > Odyoloji ve Konuşma-Dil Patolojisi
Fen > Tıp > Biyokimya ve Moleküler Biyoloji
Fen > Tıp > Biyofizik
Fen > Tıp > Biyoteknoloji ve Uygulamalı Mikrobiyoloji
Fen > Tıp > Kalp ve Kalp Damar Sistemi
Fen > Tıp > Hücre Biyolojisi
Fen > Tıp > Klinik Nöroloji
Fen > Tıp > Yoğun Bakım, Tıp
Fen > Tıp > Dermatoloji
Fen > Tıp > Acil Tıp
Fen > Tıp > Endokrinoloji ve Metabolizma
Fen > Tıp > Gastroenteroloji ve Hepatoloji
Fen > Tıp > Geriatri ve Gerontoloji
Fen > Tıp > Sağlık Bilimleri ve Hizmetleri
Fen > Tıp > Hematoloji
Fen > Tıp > İmmünoloji
Fen > Tıp > Enfeksiyon Hastalıkları
Fen > Tıp > Tamamlayıcı ve Entegre Tıp
Fen > Tıp > Tıbbi Etik
Fen > Tıp > Tıbbi İnformatik
Fen > Tıp > Tıbbi Laboratuar Teknolojisi
Fen > Tıp > Genel ve Dahili Tıp
Fen > Tıp > Adli Tıp
Fen > Tıp > Tıbbi Araştırmalar Deneysel
Fen > Tıp > Mikrobiyoloji
Fen > Tıp > Nörolojik Bilimler
Fen > Tıp > Kadın Hastalıkları ve Doğum
Fen > Tıp > Onkoloji
Fen > Tıp > Göz Hastalıkları
Fen > Tıp > Ortopedi
Fen > Tıp > Kulak, Burun, Boğaz
Fen > Tıp > Patoloji
Fen > Tıp > Pediatri
Fen > Tıp > Periferik Damar Hastalıkları
Fen > Tıp > Fizyoloji
Fen > Tıp > Temel Sağlık Hizmetleri
Fen > Tıp > Psikiyatri
Fen > Tıp > Halk ve Çevre Sağlığı
Fen > Tıp > Radyoloji, Nükleer Tıp, Tıbbi Görüntüleme
Fen > Tıp > Rehabilitasyon
Fen > Tıp > Solunum Sistemi
Fen > Tıp > Romatoloji
Fen > Tıp > Spor Bilimleri
Fen > Tıp > Cerrahi
Fen > Tıp > Transplantasyon
Fen > Tıp > Tropik Tıp
Fen > Tıp > Üroloji ve Nefroloji
DergiAraştırma MakalesiErişime Açık
  • [[1] Fendler A, Jung M, Stephan C, Honey RJ, Stewart RJ, Pace KT, et al. miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression. Int J Oncol 2011;39:1183-92.
  • [2] Masko EM, Alfaqih MA, Solomon KR, Barry WT, Newgard CB, Muehlbauer MJ, et al. Evidence for feedback regulation following cholesterol lowering therapy in a prostate cancer xenograft model. Prostate 2017;77:446-57.
  • [3] Van Hemelrijck M, Walldius G, Jungner I, Hammar N, Garmo H, Binda E, et al. Low levels of apolipoprotein A-I and HDL are associated with risk of prostate cancer in the Swedish AMORIS study. Cancer Causes Control 2011;22:1011-9.
  • [4] Farwell WR, D'Avolio LW, Scranton RE, Lawler EV, Gaziano JM. Statins and prostate cancer diagnosis and grade in a veterans population. J Natl Cancer Inst 2011;103:885-92.
  • [5] Mondul A, Weinstein S, Virtamo J, Albanes D. Serum total and HDL cholesterol and risk of prostate cancer. Cancer Causes Control 2011;22:1545-52.
  • [6] Allott EH, Howard LE, Cooperberg MR, Kane CJ, Aronson WJ, Terris MK, et al. Postoperative statin use and risk of biochemical recurrence following radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int 2014;114:661-6.
  • [7] Dillard PR, Lin MF, Khan SA. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 2008;295:115-20.
  • [8] Krycer JR, Phan L, Brown AJ. A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem J 2012;446:191-201.
  • [9] Bommer GT, MacDougald OA. Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab 2011;13:241-7.
  • [10] Karatas O, Wang J, Shao L, Ozen M, Zhang Y, Creighton C, et al. miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget 2017;8:60243-56.
  • [11] Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010;328:1566-9.
  • [12] Kuo PL, Liao SH, Hung JY, Huang MS, Hsu YL. MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein. Biochim Biophys Acta 2013;1830:3756-66.
  • [13] Zhang C, Zhang Y, Ding W, Lin Y, Huang Z, Luo Q. MiR-33a suppresses breast cancer cell proliferation and metastasis by targeting ADAM9 and ROS1. Protein Cell 2015;6:881-9.
  • [14] Liang C, Yu XJ, Guo XZ, Sun MH, Wang Z, Song Y, et al. MicroRNA-33amediated downregulation of Pim-3 kinase expression renders human pancreatic cancer cells sensitivity to gemcitabine. Oncotarget 2015;6:14440-55.
  • [15] Zhang J, Wang D, Xiong J, Chen L, Huang J. MicroRNA-33a-5p suppresses growth of osteosarcoma cells and is downregulated in human osteosarcoma. Oncol Lett 2015;10:2135-41.
  • [16] Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, et al. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther 2015;16:846-55.
  • [17] Kang J, Kim W, Lee S, Kwon D, Chun J, Son B, et al. TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene 2017;36:1585-96.
  • [18] Yang L, Yang J, Li J, Shen X, Le Y, Zhou C, et al. MircoRNA-33a inhibits epithelial-to-mesenchymal transition and metastasis and could be a prognostic marker in non-small cell lung cancer. Sci Rep 2015;5:13677.
  • [19] Li X, Wu JB, Li Q, Shigemura K, Chung LW, Huang WC. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget 2016;7:12869-84.
  • [20] Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010;285:33652-61.
  • [21] Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 2010;107:17321-6.
  • [22] Marquart TJ, Allen RM, Ory DS, Baldán A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 2010;107:12228-32.
  • [23] Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010;328:1566-9.
  • [24] Lee BH, Taylor MG, Robinet P, Smith JD, Schweitzer J, Sehayek E, et al. Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1. Cancer Res 2013;73:1211-8.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.