Vahed Berdi SHEİKH
(Gorgan University of Agricultural Science and Natural Resources, Department of Watershed and Arid Zone Management, Gorgan, Iran)
Masoud Jafari SHALAMZARİ
(Gorgan University of Agricultural Science and Natural Resources, Department of Watershed and Arid Zone Management, Gorgan, Iran)
(Gorgan University of Agricultural Science and Natural Resources, Department of Watershed and Arid Zone Management, Gorgan, Iran)
Yıl: 2017Cilt: 67Sayı: 1ISSN: 0535-8418 / 1309-6257Sayfa Aralığı: 37 - 48İngilizce

29 2
Sediment-bound soil nutrient loss under simulated rainfall
Soil erosion is not only the loss of soil particles, but also the loss of sediment-bounded nutrients and elements. One the principle methods of the assessment of soil erosion and nutrient loss, is to use rainfall simulators. The aim of this study was to evaluate the role of land-use, slope gradient and direction on the loss of soil nutrients in Kechik Coupled Watershed Site in Golestan Province using rainfall simulation. In order to determine the sediment’s content of potassium, nitrogen and phosphorous, flame photometry, Kjedalhl and spectrophotometry methods were used. To estimate organic carbon, the Walkey-Black method was exercised. Given the results, the highest obtained values of nitrogen loss was attributed to the agricultural land-use. This follows rangeland and forest; although, with a slight difference. Potassium loss was greatest in the rangelands by 0.15 t.ha-1, and agriculture and forest ranked second and third. Soil nutrient loss in terms of phosphorus, was maximum in the forest land-use and then respectively, agriculture and rangelands. Soil organic carbon loss was maximally measured in the forest, rangeland and agriculture, respectively. In this study, two slope classes of 0-20 and 20-40 was considered in the forest and rangeland land-uses, while the classification of slope gradient in agricultural land-use was in different two classes of 0-15 and 15-30. According the findings, soil nitrogen, phosphorus and organic matter loss was highest in case of the second slope gradient class (20- 40% in rangelands and agricultural fields; 20-40 % in forest land-uses) of all land-uses and aspects. Interestingly, soil potassium loss was greatest in the first slope class. Northern slope directions had the highest soil nutrient loss compared with the southern direction in all land-use types. The findings of this study put emphasis on the land-use management and primarily underlines the role of agricultural land-uses.
Fen > Mühendislik > Orman Mühendisliği
DergiAraştırma MakalesiErişime Açık
  • Zachar, D., 1982. Soil Erosion: Elsevier Science. ISBN 0-444-99725-3, pp.546, Amsterdam, Netherlands.
  • Xi-Yuan, W., Zhang, L.P., Fu, X.T., Wang, X.Y., Zhang, H.S., 2011. Nitrogen loss in surface runoff from Chinese cabbage fields. Physics and Chemistry of the Earth, Parts A/B/C 36(9): 401-406.
  • Walky, A., Black, I., 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science 79: 459-465.
  • Vahabi, J., Nikkami, D., 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research 23(4): 376-386.
  • Society, S.W.C., Lal, R., 1994. Soil Erosion Research Methods: Taylor & Francis.
  • Sharpley, A.N., 1997. Rainfall frequency and nitrogen and phosphorus runoff from soil amended with poultry litter. Journal of Environmental Quality 26(4): 1127-1132.
  • Ritter, W.F., Shirmohammadi, A., 2000. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology: CRC Press.
  • Owens, P.N., Collins, A.J., 2006. Soil Erosion and Sediment Redistribution in River Catchments: Measurement, Modelling and Management: CABI Pub.
  • Liu, R., Wang, J., Shi, J., Chen, Y., Sun, C., Zhang, P., Shen, Z., 2014. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Science of the Total Environment 468: 1069-1077.
  • Lal, R., Singh, B. R., Mwaseba, D. L., Kraybill, D., Hansen, D. O., Eik, L. O., 2014. Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa: Springer International Publishing.
  • Janeau, J.L., Gillard, L.C., Grellier, S., Jouquet, P., Le, T.P.Q., Luu, T.N.M., Ngo, Q.A., Orange, D., Pham, D.R., Tran, D.T. Tran, S.H., 2014. Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agricultural Water Management 146: 314-323.
  • Huang, J., Wu, P., Zhao, X., 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 104: 93-102.
  • Hester, R.E., Harrison, R. M., 2012. Soils and Food Security: Royal Society of Chemistry. RSC Publishing, ISBN 978- 1-84973-426-4, United Kingdom.
  • Hartanto, H., Prabhu, R., Widayat, A. S., Asdak, C., 2003. Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management 180(1): 361-374.
  • Girmay, G., Singh, B., Nyssen, J., Borrosen, T., 2009. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology 376(1): 70-80.
  • Giorgini, A., Zingales, F., 2013. Agricultural Nonpoint Source Pollution: Model Selection and Application: Elsevier Science.
  • Brown, J., Lilleland, O., 1946. Rapid determination of potassium and sodium in plant materials and soil extracts by flame photometry. In Proceedings of the American Society for Horticultural Science, Amer Soc Horticultural Science 701 North Saint Asaph Street, Alexandria, Va 22314-1998: pp. 341-346
  • Bremner, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Nitrogen-total. Methods of soil analysis. Part 3-chemical methods: pp. 1085-1121.
  • Braimoh, A.K., Vlek, P.L., 2008. Impact of land use on soil resources book. Land Use and Soil Resources chapter, pp.1-7, ISBN 978-1-4020-6777-8, DOI 10.1007/978-1-4020-6778-5_1.
  • Bochet, E., García‐Fayos, P., 2004. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restoration Ecology 12(2): 166-174.
  • Blanco-Canqui, H., Lal, R., 2008. Principles of soil conservation and management: Springer Science and Business Media.
  • Avila-Segura, M., Lyne, J.W., Meyer, J.M., Barak, P., 2004. Rapid spectrophotometric analysis of soil phosphorus with a microplate reader. Communications in Soil Science and Plant Analysis 35(3-4): 547-557.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.