EVREN TERZİ
(Istanbul University, Faculty of Forestry, 34473, Istanbul, Turkey)
Yıl: 2017Cilt: 67Sayı: 2ISSN: 0535-8418 / 1309-6257Sayfa Aralığı: 150 - 156İngilizce

62 4
Thermal behavior of Liquidambar orientalis mill wood before and after extraction processes
The effect of extractives on the thermal behavior of Liquidambar orientalis Mill. (storax) wood is studied using thermogravimetric analysis (TGA). To evaluate the effects of polar and apolar extractives on the thermal behavior of wood, sawdust samples from the heartwood of L. orientalis are extracted with either cold water (48 h), hot water (48 h), or ethanol/toluene (1:2 v/v) (6 h) prior to thermal analysis. Thermogravimetry (TG) curves show that polar and apolar extractives promote char formation, increase the amount of residue, and improve the thermal behavior of L. orientalis wood. In addition, derivative thermogravimetry (DTG) curves demonstrate that thermal degradation of unextracted and cold water-extracted wood samples occurs in a single step, while a two-step degradation pattern is seen for hot water- and ethanol/toluene-extracted wood samples. It is also observed that first degradation reactions in hot water and ethanol/toluene-extracted wood samples occur faster than those in unextracted and cold water-extracted wood samples. Although there are approximately half the number of extracted apolar compounds compared to polar compounds, the removal of both types of compounds affect the thermal properties of L. orientalis wood to the same degree. It is thus deduced that apolar extractives significantly affect the thermal behavior of L. orientalis wood.
Fen > Mühendislik > Orman Mühendisliği
DergiAraştırma MakalesiErişime Açık
  • Várhegyi, G., Grønli, M.G., Di Blasi, C., 2004. Effects of sample origin, extraction and hot water washing on the devolatilization kinetics of chestnut wood. Industrial and Engineering Chemistry Research 43(10): 2356-2367.
  • Tondi, G., Wieland, S., Wimmer, T., Thévenon, M.F., Pizzi, A., Petutschnigg, A., 2012. Tannin-boron preservatives for wood buildings: mechanical and fire properties. European Journal of Wood and Wood Products 70(5): 689-696.
  • Terzi, E., Sütçü, H., Pişkin, S., Kartal, S.N., 2009. Thermal behavior of zinc borate-treated wood. Document No. IRG 09-30511. 40th Annual Meeting of International Research Group on Wood Preservation (IRG), Beijing, China.
  • Terzi, E., Kartal, S.N., Ibanez, C.M., Köse, C., Arango, R., Clausen, C.A., Green III, F., 2012. Biological performance of Liquidambar orientalis Mill. heartwood. International Biodeterioration and Biodegradation 75: 15-22.
  • TAPPI 1999b. T 204 cm-97-Solvent extractives of wood and pulp. Technical Association of the Pulp and Paper Industry, TAPPI Press Atlanta, Georgia, USA.
  • TAPPI 1999a. T 207 cm-99-Water solubility of wood and pulp, Technical Association of the Pulp and Paper Industry. TAPPI Press Atlanta, Georgia, USA.
  • Shebani, A.N., van Reenen, A.J., Meincken, M., 2008. The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 471(1-2): 43-50.
  • Shen, D.K., Gua, S., Luo, K.H., Bridgwater, A.V., Fang, M.X., 2009. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88(6): 1024-1030.
  • Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G., 2006. Torrefaction of wood - Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 77(1): 28-34.
  • Özturk, M., Çelik, A., Güvensen, A., Hamzaoğlu, E., 2008. Ecology of tertiary relict endemic Liquidambar orientalis Mill. Forest Ecology and Management 256(4), 510-518.
  • Orfao, J.J.M., Antunes, F.J.A., Figueiredo, J.L., 1999. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel 78(3): 349-358.
  • Niu, M., Zhao, G. J., Alma, M. H., 2011. Thermogravimetric studies on condensed wood residues in polyhydric alcohols liquefaction. BioResources 6(1): 615-630.
  • Mészáros, E., Jakab, E., Várhegyi, G., 2007. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive compounds of Robinia pseudoacacia. Journal of Analytical and Applied Pyrolysis 79 (1-2): 61-70.
  • Marcovich, N.E., Villar, M.A., 2003. Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites. Journal of Applied Polymer Science 90(10): 2775-2784.
  • Le Van, S.L., 1989. Thermal degradation. In: Schniewind, Arno P., (ed.) Concise Encyclopedia of Wood & Wood Based Material, 1st Edition, Pergmon Press, Elmsford, NY, 217-273.
  • Kartal, S.N., Terzi, E., Yoshimura, T., Arango, R., Clausen, C.A., Green III, F., 2012. Preliminary evaluation of storax and its constituents: Fungal decay, mold and termite resistance. International Biodeterioration and Biodegradation 70: 47-54.
  • Hirata, T., Kawamoto, S., Nishimoto, T., 1991. Thermogravimetry of wood treated with water-insoluble retardants and a proposal for development of fire-retardant wood materials. Fire and Materials 15(1): 27-36.
  • Gašparovič, L., Koreňová, Z., Jelemenský, Ľ., 2009. Kinetic study of wood chips decomposition by TGA. 36th International Conference of SSCHE, Slovak Society of Chemical Engineering, May 25-29, Tatransk´e Matliare, Slovakia.
  • Fang, M.X., Shen, D.K., Li, Y.X., Yu, C.J., Luo, Z.Y., Cen, K.F., 2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentration by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis 77(1): 22-27.
  • Emandi, A., Vasiliu, C.I., Budrugeac, P., Stamatin, I., 2011. Quantitative investigation of wood composition by integrated FT-IR and thermogravimetric methods. Cellulose Chemistry and Technology 45(9-10): 579-584.
  • González-Laredo, R.F., Rosales-Castro, M., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., Moreno-Jiménez, M.R., Karchesy, J.J., 2015. Wood preservation using natural products. Madera y Bosques, 21: 63-76
  • Doğu, D., Koç, K.H., As, N., Atik, C., Aksu, B., Erdinler, S., 2002. Tree information and general evaluation with industrial design in Turkey (Türkiye’de yetişen endüstriyel öneme sahip ağaçların temel kimlik bilgileri ve kullanıma yönelik genel değerlendirme). Journal of the Faculty of Forestry Istanbul University 51(B2): 69-84.
  • Cordero, T., Rodriguez-Maroto, J.M., Garcia, F., Rodriguez, J.J., 1991. Thermal decomposition of wood in oxidizing atmosphere. A kinetic study from non-isothermal TG experiments. Thermochimica Acta 191(1): 161-178.
  • Chauvette, G., Heitz M., Rubio, M., Khorami, J., Chornet, E., Ménard, H., 1985. TG/DTG as a rapid method for the characterization of solid residues derived from liquefaction of lignocellulosics. Thermochimica Acta 84(1): 1-5.
  • Bozkurt, A.Y., Göker, Y., Kurtoğlu, A., 1989. Some properties of the Liquidambar orientalis (Sığla ağacının bazı özellikleri). Journal of the Faculty of Forestry Istanbul University 39(B1): 43-52 (in Turkish).
  • Alan, M., Kaya, Z., 2003. EUFORGEN technical guidelines for genetic conservation and use for oriental sweet gum (Liquidambar orientalis). International Plant Genetic Resources Institute, Rome, Italy.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.