MEVRA AL
(KTO Karatay Üniversitesi, Tıp Fakültesi, Tıbbi Farmakoloji Anabilim Dalı, Konya, Türkiye)
MEHMET KILIÇ
(Necmettin Erbakan Üniversitesi, Meram Tıp Fakültesi, Tıbbi Farmakoloji Anabilim Dalı, Konya)
AYŞE SAİDE ŞAHİN
(Necmettin Erbakan Üniversitesi, Meram Tıp Fakültesi, Tıbbi Farmakoloji ABD, Konya)
BURAK CEM SONER
(Necmettin Erbakan Üniversitesi, Meram Tıp Fakültesi, Tıbbi Farmakoloji Anabilim Dalı, Konya)
Yıl: 2017Cilt: 33Sayı: 4ISSN: 1017-6616 / 2149-8059Sayfa Aralığı: 82 - 90Türkçe

131 0
Farmakogenetik Yönden Bireyler Arası Farmakokinetik Varyasyonlar
Farmakogenetik (PGx), genetik varyasyonlar ve bunların bireyler arasında oluşturduğu ilaç yanıtı farklılıkları ile ilgilenir. İlaç metabolizmasından sorumlu enzimlerin keşfi ve bu enzimleri kodlayan DNA dizilimlerinin araştırılması bireysel tedavi stratejilerinin oluşturulmasını sağlar. İlaç metabolizmasından sorumlu sitokrom 2B6, sitokrom 2C9, sitokrom 2C19, sitokrom 2D6, sitokrom 3A4, N-asetil transferaz, dihidropirimidin dehidrogenaz, tiopurin metiltransferaz, 5’-difosfat (UDP)-glukuronoziltransferaz ve katekol-O-metil transferaz enzim polimorfizleri ilacın farmokokinetik özelliğini etkileyerek bireyler arası ilaç yanıtı farklılıklarına neden olabilirler. PGx çalışmaların temelini oluşturan ilk örnekler N- asetil transferaz ve sitokrom 2D6 polimorfizmleridir. İlaç seçiminde ciddi farmakokinetik farklılıklara neden olan enzim polimorfizmlerinin göz önünde bulundurulması tedavi başarısını artırmak ve advers/toksik reaksiyon riskini önlemek açısından önemlidir. Yaklaşık 50 yıl önce temelleri atılan farmakogenetik ile ilgili çalışmalar gen teknolojisinin gelişmesi ile günümüzde daha önemli bir hale gelmiştir. Teknolojik gelişmeler sayesinde hızlanan farmakogenetik çalışmalar ile bireye özgü ilaç seçimi farmakogenetiğin ikinci 50 yılı içerisinde daha fazla gelişme kaydederek önemli bir parametre olacaktır.
Fen > Tıp > Genel ve Dahili Tıp
DergiDerlemeErişime Açık
  • 108. http://www.genomicmedicinealliance.org Date Accessed: 16.01.2017.
  • 107. Shuldiner AR, Relling MV, Peterson JF, et al. The pharmacogenomics research network translational pharmacogenetics program: overcoming challenges of real-world implementation. Clin Pharmacol Ther 2013;94(2):207–10.
  • 106. http://www.eu-pic.net/index.php Date Accessed: 15.01.2017.
  • 105. Manolio TA, Abramowicz M, Al-Mulla F, et al. Global implementation of genomic medicine : We are not alone. Sci Transl Med 2015;7(290):1–8.
  • 104. http://www. fda . gov/Drugs/ScienceResearch/ResearchAreas/ Pharmacogenetics/ucm083378.htm Date Accessed: 15.01.2017.
  • 103. Ehmann F, Caneva L, Prasad K, et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J 2015;15(3):201–10.
  • 102. Relling MV, Klein TE. CPIC: Clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther 2011;89(3):464–7.
  • 101. Muss HB, Thor AD, Berry DA, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994;330(18):1260–6.
  • 100. Relling M V, Evans WE. Pharmacogenomics in the clinic. Nature 2015;526(7573):343–50.
  • 99. Plumpton CO, Roberts D, Pirmohamed M, Hughes DA. A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. pharmacoeconomics 2016;34(8):771–93.
  • 98. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001;286(18):2270–9.
  • 97. Park S, Park J, Yoo HJ, et al. Association of the catechol O-methyltransferase Val158-Met polymorphism and reduced interference control in Korean children with attention-deficit hyperactivity disorder. Psychiatry Investig 2015;12(4):563–5.
  • 96. Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci 2001;98(12):6917–22.
  • 95. Kayaalp OS. Rasyonel tedavi yönünden tıbbi farmakoloji. Ankara: Hacettepe-Taş Kitabevi, 2002: 1063-4.
  • 94. Bock KW. Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): Mechanisms responsible for interindividual variation of UGT levels. Biochem Pharmacol 2010;80(6):771– 7.
  • 93. https://ghr.nlm.nih.gov/gene/UGT1A1 Date Accessed: 09.01.2017.
  • 92. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000;40(1):581–616.
  • 91. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 2003;3(3):136–58.
  • 90. McLeod HL, Krynetski EY, Relling MV EW. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000;14(4):567–72.
  • 89. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987;41(1):18–25.
  • 88. Kayaalp OS. Akılcı tedavi yönünden tıbbi farmakoloji. Ankara; Pelikan, 2012: 770-1.
  • 87. Lennard L, Cartwright CS, Wade R, Vora A. Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics. Br J Haematol 2014;77(4):704–14.
  • 86. Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: Genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997;126(8):608–14.
  • 85. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32(5):651–62.
  • 84. Johnson MR, Wang K, Diasio RB. Profound dihydropyrimidine dehydrogenase deficiency resulting from a novel compound heterozygote genotype. Clin Cancer Res 2002;8(3):768–74.
  • 83. Falvella F, Caporale M, Cheli S, et al. Undetected toxicity risk in pharmacogenetic testing for dihydropyrimidine dehydrogenase. Int J Mol Sci 2015;16(4):8884–95.
  • 82. Diasio RB, Beavers TL, Carpenter JT. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest 1988;81(1):47–51.
  • 81. https://www.ncbi.nlm.nih.gov/books/NBK395610/ Date Accessed: 10.01.2017.
  • 80. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 2005;49(5):1733–8.
  • 79. Bullock S, Elizabeth M. Fundamentals of pharmacology. Australia: Pearson, 2014: 182–90.
  • 78. Hughes H, Biehl J, Jones A, Schmidt L. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am Rev Tuberc 1954;70(2):266–73.
  • 77. Hughes HB. On the metabolic fate of isoniazid. J Pharmacol Exp Ther 1953;109(4):444–52.
  • 76. Evans DAP, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. Br Med J 1960;2(5197):485–91.
  • 75. Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997;37:269–96.
  • 74. Zhou S, Liu J, Chowbay B, Zhou S, Liu J, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009;41(2):89–295.
  • 73. Apellániz-Ruiz M, Lee M, Sánchez-Barroso L, et al. Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin Cancer Res 2015;21(2):322–8.
  • 72. Lamba JK, Lin YS, Thummel K, et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002;12:121–32.
  • 71. Núñez M, González de Requena D, Gallego L, et al. Higher efavirenz plasma levels correlate with development of insomnia. J Acquir Immune Defic Syndr 2001;28(4):399–400.
  • 70. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 2001;15(1):71–5.
  • 69. Sukasem C, Chamnanphon M, Koomdee N, et al. High plasma efavirenz concentration and CYP2B6 polymorphisms in Thai HIV-1 infections. Drug Metab Pharmacokinet 2013;28(5):391–7.
  • 68. Gounden V, van Niekerk C, Snyman T, George J A. Presence of the CYP2B6 516G>T polymorphism, increased plasma efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther 2010;7(32):1–9.
  • 67. Ward BA, Gorski JC, Jones DR, et al. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 2003;306(1):287–300.
  • 66. Carbonell N, Verstuyft C, Massard J, et al. CYP2C9*3 loss-of-function allele is associated with acute upper gastrointestinal bleeding related to the use of NSAIDs other than aspirin. Clin Pharmacol Ther 2010;87(6):693–8.
  • 65. Pilotto A, Seripa D, Franceschi M, et al. Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology 2007;133(2):465–71.
  • 64. Davies NM, McLachlan AJ, Day RO, Williams KM. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 2000;38(3):225–42.
  • 63. Johnson JA, Gong L, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. Nature 2011;90(4):625–9.
  • 62. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002;12(3):251–63.
  • 61. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 2013;17(3):165–84.
  • 60. http://www.cypalleles.ki.se/cyp2c9.htm Date Accessed: 26.12.2016.
  • 59. Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 2007;5(12):2429–36.
  • 58. Hulot J-S, Bura A, Villard E, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006;108(7):2244–7.
  • 57. Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 2010;38(1):92–9.
  • 56. https://www.pharmgkb.org/pathway/PA154424674 Date Accessed: 30.12.2016.
  • 55. Meyer UA. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol 1996;8(1):21-5.
  • 54. Chong E, Ensom MHH. Pharmacogenetics of the proton pump inhibitors: a systematic review. Pharmacotherapy 2003;23(4):460–71.
  • 53. Sallee FR, DeVane CL, Ferrell RE. Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency. J Child Adolesc Psychopharmacol 2000;10(1):27–34.
  • 52. https://www.pharmgkb.org/pathway/PA161749012DateAccessed:28.12.2016.
  • 51. Jornil J, Jensen KG, Larsen F, Linnet K. Risk assessment of accidental nortriptyline poisoning: the importance of cytochrome P450 for nortriptyline elimination investigated using a population-based pharmacokinetic simulator. Eur J Pharm Sci 2011;44(3):265–72.
  • 50. McAlpine DE, Biernacka JM, Mrazek DA, et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 2011;33(1):14–20.
  • 49. Gex-Fabry M, Balant-Gorgia AE, Balant LP, et al. Time course of clinical response to venlafaxine: relevance of plasma level and chirality. Eur J Clin Pharmacol 2004;59(12):883–91.
  • 48. Kirchheiner J, Keulen JHA, Bauer S, Roots I, Brockmöller J. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 2008;28(1):78–83.
  • 47. Bragg P, Zwass MS, Lau M, Fisher DM. Opioid pharmacodynamics in neonatal dogs: differences between morphine and fentanyl. J Appl Physiol 1995;79(5):1519–24.
  • 46. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006;368:704.
  • 45. http://www.fda.gov/drugs/drugsafety/ucm339112.htm Date Accessed:29.12.2016.
  • 44. Friedrichsdorf SJ, Nugent AP, Strobl AQ. Codeine-associated pediatric deaths despite using recommended dosing guidelines: three case reports. J Opioid Manag 2013;9(2):151–5.
  • 43. Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant - an ultra-rapid metabolizer. Paediatr Anaesth 2007;17(7):684–7.
  • 42. Haufroid V, Hantson P. CYP2D6 genetic polymorphisms and their relevance for poisoning due to amphetamines, opioid analgesics and antidepressants. Clin Toxicol 2015;3650:1–10.
  • 41. Volpe DA, McMahon Tobin GA, et al. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol 2011;59(3):385–90.
  • 40. Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014;95(4):376– 82.
  • 39. http://www.cypalleles.ki.se/cyp2d6.htm. Date Accessed:25.12.2016.
  • 38. Gaedigk A, Simon SD, Pearce RE, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008;83(2):234–42.
  • 37. http://www.cypalleles.ki.se/cyp2d6.htm Date Accessed:25.12.2016.
  • 36. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005;352(21):2211–21.
  • 35. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One 2013;8(12):1-12.
  • 34. Johnson AD, Wang D, Sadee W. Polymorphisms affecting gene regulation and mRNA processing: broad implications for pharmacogenetics. Pharmacol Ther 2005;106(1):19–38.
  • 33. Al-Ghoul M, Valdes R. Fundamentals of pharmacology and applications in pharmacogenetics. Clin Lab Med 2008;28(4):485–97.
  • 32. Kalman LV, Agúndez JAG, Appell ML, et al. Pharmacogenetic allele nomenclature: international workgroup recommendations for test result reporting. Clin Pharmacol Ther 2016;99(2):172–85.
  • 31. Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004;14(1):1–18.
  • 30. Kayaalp OS. Akılcı tedavi yönünden tıbbi farmakoloji. Ankara; Pelikan, 2012:40-8.
  • 29. Brunton LL. Goodman&Gilman’s the pharmalogical basis of therapeutics. China: Mc Graw Hill, 2001:123-27.
  • 28. The International SNP Map Working Group, Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409(6822):928-33.
  • 27. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291(5507):1304–51.
  • 26. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921.
  • 25. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 1979;16(3):183–7.
  • 24. Mahgoub A, Dring LG, Idle JR, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977;310(8038):584–6.
  • 23. Brunton LL. Goodman&Gilman’s the pharmalogical basis of therapeutics. China: Mc Graw Hill, 2001:137.
  • 22. Gurwitz D, Motulsky AG. Drug reactions, enzymes, and biochemical genetics: 50 years later. Pharmacogenomics 2007;8(11):1479–84.
  • 21. Kalow W. Pharmacogenetics: heredity and the responses to drugs. Philadelphia: W.B. Saunders, 1962.
  • 20. Vogel F. Moderne probleme der humangenetik. Ergeb Inn Med Kinderheild 1959;12:52–125.
  • 19. Motulsky AG. Drug reactions, enzymes, and biochemical genetics. J Am Med Assoc 1957;165(7):835.
  • 18. Kalow W, Genest K. A method for the detection of atypical forms of human serum cholinesterase; determination of dibucaine numbers. Can J Biochem Physiol 1957;35(6):339–46.
  • 17. Carson PE, Flanagan CL, Ickes CE, Alving AS. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 1956;124(3220):484–5.
  • 16. Snyder L. Studies in human inheritance IX. The inheritance of taste deficiency in man. Ohio J Sci 1932;32:436–68.
  • 15. http://www.genomenewsnetwork.org/resources/timeline/1908_Garrod.php Date Accessed:25.12.2016.
  • 14. Prasad C, Galbraith PA. Sir Archibald Garrod and alkaptonuria - “story of metabolic genetics.” Clin Genet 2005;68(3):199–203.
  • 13. Knox WE. Sir Archibald Garrod’s “inborn errors of metabolism” II. alkaptonuria. Am J Hum Genet 1958;10(2):95-124.
  • 12. Mendel G. Verusche uber pflanzen-hybride. Brünn, 1866:4.
  • 11. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999;56(4):247–58.
  • 10. Maggo SD, Savage RL, Kennedy MA. Impact of new genomic technologies on understanding adverse grug reactions. Clin Pharmacokinet 2016;55(4):419–36
  • 9. http://www.fda.gov/downloads/drugs/guidance complian ceregulatory infor-mation/guidances/ucm337169.pdf Date Accessed: 26.12.2016.
  • 8 Vesell ES. Pharmacogenetic perspectives gained from twin and family studies. Pharmacol Ther 1989;41(3):535–52.
  • 7 Wu X, Spitz MR, Amos CI, et al. Mutagen sensitivity has high heritability: evidence from a twin study. Cancer Res 2006;66(12):5993–6.
  • 6. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449(7164):851–61.
  • 5. Brunton LL. Goodman&Gilman’s the pharmalogical basis of therapeutics. China: Mc Graw Hill, 2001: 145-65.
  • 4. Kayaalp OS. Akılcı tedavi yönünden tıbbi farmakoloji. Ankara: Pelikan, 2012: 123
  • 3. Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 2004;5(9):669–76.
  • 2. Ingelman-Sundberg M. Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 2001;250(3):186–200.
  • 1. Jain KK. Textbook of personalized medicine. New York: Springer, 2015: 101-2.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.