Yıl: 2017 Cilt: 37 Sayı: 1 (40.yıl özel baskı) Sayfa Aralığı: 25 - 33 Metin Dili: İngilizce İndeks Tarihi: 18-12-2018

PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS

Öz:
In this study, some improving methods of gas turbine cogeneration cycles are applied on a simple cogenerationcycle. These methods are preheating air, preheating air and fuel, inlet air cooling by using evaporative cooling and absorptioncooling. These cogeneration systems are evaluated with respect to energy efficiency (energy utilization factor), exergeticefficiency, electric and heat power, electric-heat energy rate, artificial thermal efficiency and fuel energy saving ratio and arecompared with each other. In these analyses, the thermodynamic parameters such as compressing ratio, air and fuel mass ratioand compressor inlet temperatures of the cycles are used. It is concluded that these parameters can be listed from most effectiveto least effective as air fuel ratio, pressure ratio and compressor inlet temperature. It is also concluded that the most efficientcycle is found to be the air-fuel preheated cycle for obtaining more electric power and less heat power, and the simple cycleis the most suitable one for obtaining more heat power and less electric power.
Anahtar Kelime:

Konular: Termodinamik

GAZ TÜRBİNLİ KOJENERASYON TESİSLERİNİN PERFORMANS ANALİZLERİ

Öz:
Bu çalışmada, gaz türbinli kojenerasyon çevrimlerinin geliştirilmesinde kullanılan bazı yöntemler basit bir kojenerasyon çevrimi üzerinde uygulanmıştır. Bu yöntemler havanın ön ısıtılması, hava ve yakıtın ön ısıtılması ve giriş havasının evaporatif ve absorpsiyonlu soğutma ile soğutulmasıdır. Bu kojenerasyon sistemleri enerji verimi (enerji kullanım faktörü), ekserji verimi, elektrik ve ısı gücü, elektrik ısı enerjisi oranı, yapay termal verim ve yakıt enerjisi kazanım oranı yönünden değerlendirilmiş ve birbirleri ile karşılaştırılmışlardır. Bu analizlerde basınç oranı, hava-yakıt kütleleri oranı ve çevrimlerin kompresör giriş sıcaklıkları gibi termodinamik parametreler kullanılmıştır. Bu parametrelerin en çok etkili olanından en az etkili olanına göre, hava-yakıt kütleleri oranı, basınç oranı ve kompresör giriş sıcaklıkları şeklinde sıralandığı anlaşılmıştır. Ayrıca daha çok elektrik ve daha az ısıl güç yönünden en verimli çevrimin hava-yakıt ön ısıtmalı çevrim ve daha çok ısıl güç daha az elektrik gücü için basit çevrimin en uygun çevrim oldukları ortaya çıkarılmıştır.
Anahtar Kelime:

Konular: Termodinamik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Wang, F.J., and Chiou, JS., 2002, Performance Improvement for a Simple Cycle Gas Turbine GENSETa Retrofitting Example, Applied Thermal Engineering, 22, 1105-1115.
  • Sue, D.C., and Chuang, C.C., 2004, Engineering Design and Exergy Analyses for Combustion Gas Turbine Based Power Generation System, Energy 29, 1183-1205.
  • Santo, D.B.E., and Gallo, W.L.R., 2000, Predicting Performance of a Gas Turbine Cogeneration System with Inlet Air Cooling, Ecos2000 Proceedings, Universiteit Twente, Nederland.
  • Rosen, M.A., and Dincer, I., 2003, Exergy-Cost-EnergyMass Analysis of Thermal Systems and Processes, Energy Convers. Mgmt., 44, 1633-1651.
  • Najjar, Y.S.H., 2001, Efficient Use of Energy by Utilizing Gas Turbine Combined Systems, Applied Thermal Engineering 21, 407-438.
  • Najjar, Y.S.H., 2000, Gas Turbine Cogeneration Systems: A Review of Some Novel Cycles, Applied Thermal Engineering 20, 179-197.
  • Moran, J.M., and Tsatsaronis, G., 2000, The CRC Handbook of Thermal Engineering, CRC Press LLC., 15- 109, Florida.
  • Malinowska, W., and Malinowski, L., 2003, Parametric Study of Exergetic Efficiency of A Small-Scale Cogeneration Plant Incorporating A Heat Pump, Applied Thermal Engineering 23, 459-472.
  • Lazzaretto, A., and Tsatsaronis, G., 2006, SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems, Energy 31, 1257-1289.
  • Khaliq, A., and Kaushik, S.C., 2004, Thermodynamic Performance Evaluation of Combustion Gas Turbine Cogeneration System with Reheat, Applied Thermal Engineering 24, 1785-1795.
  • Karaali, R., and Ozturk, I.T., 2015, Thermoeconomic optimization of gas turbine cogeneration plants. Energy 80, 474-485.
  • Karaali, R., 2010, Thermoeconomic Optimization of Cogeneration Power Plants, PhD Thesis, Kocaeli Univ.
  • Jaluria, Y., 2008, Design and Optimization of Thermal Systems, Second ed. CRC Press, New York.
  • Huang, F.F., 1990, Performance Evaluation of Selected Combustion Gas Turbine Cogeneration Systems Based on First and Second-Law Analysis, Journal of Engineering for Gas Turbines and Power, 112, 117-121.
  • Horlock, J.H., 1997, Cogeneration-Combined Heat and Power (CHP), CRİEGER Pub.,Florida.
  • Feng, X., Cai, Y.I., and Qian, L.L., 1998, A New Performance Criterion For Cogeneration System, Energy Convers. Mgmt., 39, 1607-1609.
  • Boyce, M.P., 2002, Handbook for Cogeneration and Combined Cycle Power Plants, Asme Press, 42, 220, New York.
  • Bejan, A., Tsatsaronis, G., and Moran, M., 1996, Thermal Design and Optimization, Wiley Pub, New York.
  • Atmaca, M., Gumus, M., Inan, A.T., Yilmaz, T., 2009, Optimization of Irreversible Cogeneration Systems under Alternative Performance Criteria, International Journal of Thermophysics, Vol:30, issue:5, pp: 1724– 1732, DOI:10.1007/s10765-009-0621-3
  • Atmaca, M., Yilmaz, E., Kurtluş AB., 2016, Application of Cogeneration on a Housing Complex, Journal of Clean Energy Technologies, volume 4,No.2, pp 129-135, DOI: 10.7763/JOCET.2016.V4.266
  • Atmaca, M., 2010, Efficiency Analysis of Combined Cogeneration Systems with Steam and Gas Turbines, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33:4, 360-369, DOI: 10.1080/15567031003741434
  • ASHRAE, 2000, Cogeneration Systems and Engine and Turbine Drives, ASHRAE Systems And Equipment Handbook (SI), Chapter 7, American society of Heating, Refrigerating and air conditioning Engineers New York.
APA KARAALİ R, ÖZTÜRK İ (2017). PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. , 25 - 33.
Chicago KARAALİ RABİ,ÖZTÜRK İlhan Tekin PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. (2017): 25 - 33.
MLA KARAALİ RABİ,ÖZTÜRK İlhan Tekin PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. , 2017, ss.25 - 33.
AMA KARAALİ R,ÖZTÜRK İ PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. . 2017; 25 - 33.
Vancouver KARAALİ R,ÖZTÜRK İ PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. . 2017; 25 - 33.
IEEE KARAALİ R,ÖZTÜRK İ "PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS." , ss.25 - 33, 2017.
ISNAD KARAALİ, RABİ - ÖZTÜRK, İlhan Tekin. "PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS". (2017), 25-33.
APA KARAALİ R, ÖZTÜRK İ (2017). PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. Isı Bilimi ve Tekniği Dergisi, 37(1 (40.yıl özel baskı)), 25 - 33.
Chicago KARAALİ RABİ,ÖZTÜRK İlhan Tekin PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. Isı Bilimi ve Tekniği Dergisi 37, no.1 (40.yıl özel baskı) (2017): 25 - 33.
MLA KARAALİ RABİ,ÖZTÜRK İlhan Tekin PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. Isı Bilimi ve Tekniği Dergisi, vol.37, no.1 (40.yıl özel baskı), 2017, ss.25 - 33.
AMA KARAALİ R,ÖZTÜRK İ PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. Isı Bilimi ve Tekniği Dergisi. 2017; 37(1 (40.yıl özel baskı)): 25 - 33.
Vancouver KARAALİ R,ÖZTÜRK İ PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS. Isı Bilimi ve Tekniği Dergisi. 2017; 37(1 (40.yıl özel baskı)): 25 - 33.
IEEE KARAALİ R,ÖZTÜRK İ "PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS." Isı Bilimi ve Tekniği Dergisi, 37, ss.25 - 33, 2017.
ISNAD KARAALİ, RABİ - ÖZTÜRK, İlhan Tekin. "PERFORMANCE ANALYSES OF GAS TURBINE COGENERATION PLANTS". Isı Bilimi ve Tekniği Dergisi 37/1 (40.yıl özel baskı) (2017), 25-33.