Yıl: 2018 Cilt: 27 Sayı: 4 Sayfa Aralığı: 307 - 313 Metin Dili: Türkçe İndeks Tarihi: 14-05-2019

Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları

Öz:
İntravitreal anti-vasküler endotelyal büyüme faktörü (anti-VEGF) enjeksiyonları günümüzde retina sahasında en çok uygulanan tedavi yönte-midir. Klinisyenler anti-VEGF tedavisi uygulanan gözlerde pars plana vitrektomi gerektiren durumlarla karşı karşıya kalmakta ve birçok hasta-da arka segment hastalığının kronik ve rekürren doğasından dolayı intravitreal enjeksiyonlara cerrahiden sonra da devam etmek gerekmektedir.Vitrektomize gözlerde ilaç klirensinin arttığı ve etkinliğinin azaldığı genel kabul görmektedir. Anti-VEGF ilaçlarla yapılan geniş serili klinikçalışmaların çoğu vitrektomize olmayan gözlerde yapılmış olup vitrektomize gözlerde bu ilaçlarla tedavi etkinliğinin nasıl bir değişim gös-terdiği sorusuna yanıt vermezler. Vitrektomize gözlerde intravitreal anti-VEGF konsantrasyonunu vitrektomize olmayan gözlerle kıyaslayanaz sayıda hayvan çalışması olsa da eldeki verilerle vitrektomize insan gözlerinde kesin yargıya varabilmek zor görünmektedir. Bu derlemedevitrektominin anti-VEGF ilaçların farmakokinetiğine ve klinik sonuçlara olan etkisini irdelemeyi amaçladık.
Anahtar Kelime:

Konular: Göz Hastalıkları

Intravitreal Anti-VEGF Drug Injections in Vitrectomized Eyes

Öz:
Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents is currently the most commonly performed procedure in the fi eld of retina. In eyes undergoing anti-VEGF treatment, clinicians are frequently challenged with conditions necessitating pars plana vitre- ctomy. However, for many patients, the chronic and recurrent nature of posterior segment disease necessitates continued intravitreal injections after surgery. Generally, drug clearance has been assumed to increase and drug effectiveness decrease in vitrectomized eyes. Most of the large clinical trials of anti-VEGF drugs were performed in nonvitrectomized eyes and do not answer how the effect of treatment with these drugs may be altered in vitrectomized eyes. Although few animal studies have compared intravitreal anti-VEGF concentrations of vitrectomized eyes with those of nonvitrectomized eyes, it is diffi cult to draw defi nite conclusions from the available data in vitrectomized human eyes. We aimed to discuss effects of vitrectomy on pharmacokinetics of anti-VEGF agents and clinical outcomes in this review.
Anahtar Kelime:

Konular: Göz Hastalıkları
Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Bibliyografik
  • Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age related macular degeneration. N Engl J Med 2006;355:1419-31
  • Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for mac- ular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 2010;117:1102-12
  • The CATT Research Group. Ranibizumab and Bevacizumab for Neovascular age-related macular degeneration. N Engl J Med 2011;364:1897-908
  • Korobelnik JF, Do DV, Schmidt-Erfurth U, et al. Intravitreal afl iber- cept for diabetic macular edema. Ophthalmology 2014;121:2247- 54
  • Nomoto H, Shiraga F, Kuno N, et al. Pharmacokinetics of bevaci- zumab after topical, subconjunctival, and intravitreal administrati- on in rabbits. Invest Ophthal Vis Sci 2009;50:4807-13
  • Bakri SJ, Snyder MR, Reid JM, et al. Pharmacokinetics of intravit- real bevacizumab (Avastin). Ophthalmology 2007;114:855-9
  • Bakri SJ, Snyder MR, Reid JM, et al. Pharmacokinetics of intravit- real ranibizumab (Lucentis).Ophthalmology 2007;114:2179-82
  • Sinapis CI, Routsias JG, Sinapis AI, et al. Pharmacokinetics of intravitreal bevacizumab (Avastin) in rabbits. Clin Ophthalmol 2001;5:697-704
  • Krohne TU, Eter N, Holz FG, et al. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol 2008;146:508-12
  • Meyer CH, Krohne TU, Holz FG, et al. Intraocular pharmacokine- tics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina 2011;31:1877-84
  • Krohne TU, Liu Z, Holz FG, et al. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol 2012;154:682-6
  • Gaudreault J, Fei D, Rusit J, et al. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci 2005;46:726-33
  • Stewart MW. What are the half-lives of ranibizumab and afl iber- cept (Trap-eyeVEGF) in human eyes? Calculation swith a mathe- matical model. Eye Reports 2011; 1:5
  • Park SJ, Choi Y, Mi Na Y, et al. Intraocular Pharmacokinetics of Intravitreal Afl ibercept (Eylea) in a rabbit model. Invest Ophthalmol Vis Sci 2016;57: 2612-7
  • Avery RL, Castellarin AA, Steinle NC, et al. Systemic pharma- cokinetics following intravitreal injections of ranibizumab, be- vacizumab or afl ibercept in patients with neovascular AMD. Br J Ophthalmol 2014;98:1636-41
  • Avery RL, Castellarin AA, Steinle NC, et al. Systemic pharmaco- kinetics and pharmacodynamics of intravitreal afl ibercept, bevaci- zumab and ranibizumab. Retina 2017;37:1847-58
  • Gisladottir S, Loftsson T, Stefansson E. Diffusion characteristics of vitreous humour and saline solution follow the Stokes Einstein equation. Graefes Arch Clin Exp Ophthalmol 2009;247:1677-84
  • Kakinoki M, Sawada O, Sawada T, et al. Effect of vitrectomy on aqueous VEGF concentration and pharmacokinetics of bev- acizumab in macaque monkeys. Invest. Ophthalmol Vis Sci 2012;53:5877-80
  • Christoforidis JB, Williams MM, Wang J, et al. Anatomic and pharmacokinetic properties of intravitreal bevacizumab and ran- ibizumab after vitrectomy and lensectomy. Retina 2013;33:946– 52
  • Christoforidis JB, Xie Z, Jiang A, Wang J, et al. Serum levels of in- travitreal bevacizumab after vitrectomy, lensectomy and non-sur- gical controls. Curr Eye Res 2013;38:761-6
  • Ahn J, Kim H, Woo SJ, et al. Pharmacokinetics of intravitreally in- jected bevacizumab in vitrectomized eyes. J Ocul Pharmacol Ther 2013;29:612-8
  • Ahn SJ, Ahn J, Park S, et al. Intraocular pharmacokinetics of ra- nibizumab in vitrectomized versus nonvitrectomized eyes. Invest Ophthalmol Vis Sci 2014;55: 567-73
  • Niwa Y, Kakinoki M, Sawada T, et al. Ranibizumab and Afl iber- cept: Intraocular pharmacokinetics and their effects on Aqueous VEGF Level in Vitrectomized and Nonvitrectomized macaque eyes. Invest Ophthalmol Vis Sci 2015;56:6501-5
  • Del Amo EM, Rimpelä AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2017;57:134- 85
  • Laude A, Tan LE, Wilson CG, et al. Intravitreal therapy for neo- vascular age-related macular degeneration and inter-individu- al variations in vitreous pharmacokinetics. Prog Retin Eye Res 2010;29:466-75
  • Peeters L, Sanders NN, Braeckmans K, et al. Vitreous: A barrier to nonviral ocular gene therapy. Investig. Ophthalmol Vis Sci 2005;46:3553-61
  • Xu Q, Boylan NJ, Suk JS. Nanoparticle diffusion in, and mic- rorheology of, the bovine vitreous ex vivo. J. Control Release 2013;167:76-84
  • Lee DA, Fefeu S, Edo-Ukeh AA, et al. EyeSite: A semi-automated database of protein families in the eye. Nucleic Acids Res. 2004 1;32(Database issue):D148-52
  • Dias CS, Anand BS, Mitra AK. Effect of mono- and di-acylation on the ocular disposition of ganciclovir: physicochemical proper- ties, ocular bioreversion, and antiviral activity of short chain ester prodrugs. J Pharm Sci 2002;91:660-8
  • Vaughan-Thomas A, Gilbert SJ, Duance VC. Elevated levels of proteolytic enzymes in the aging human vitreous. Investig Oph- thalmol Vis Sci 2000;41:3299-304
  • Maurice DM, Mishima S. Ocular pharmacology. In: Sears, M. (Ed.): Handbook of Experimental Pharmacology. Springer-Verlag, Berlin-Heidelberg 1984;16-119
  • Del Amo EM, Vellonen KS, Kidron H. Intravitreal clearance and volume of distribution of compounds in rabbits: in silico predic- tion and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm 2015;95:215-26
  • Kidron H, Vellonen KS, del Amo EM. Prediction of the corneal permeability of drug-like compounds. Pharm Res 2010;27:1398- 407
  • Heiduschka P, Fietz H, Hofmeister S. et al. Penetration of bevaci- zumab through the retina after intravitreal injection in the monkey. Invest. Ophthalmol Vis Sci 2007;48:2814-23
  • del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the pub- lished data. Exp Eye Res 2015;137:111-24
  • Dixon, JA, Oliver, SCN, Olson, JL, et al. VEGF Trap-Eye for the treatment of neovascular age-related macular degeneration. Expert Opin Investig Drugs 2009;18:1573-80
  • Dithmer M, Hattermann K, Pomarius, P, et al. The role of Fc-re- ceptors in the uptake and transport of therapeutic antibodies in the retinal pigment epithelium. Exp Eye Res 2016;145:187-205
  • Kuo TT, Aveson VG. Neonatal Fc receptor and IgG-based thera- peutics MAbs 2011;3:422-30
  • Zehetner C, Kralinger MT, Modi YS. et al.Systemic levels of vascular endothelial growth factor before and after intravitreal in- jection of afl ibercept or ranibizumab in patients with age-related macular degeneration: a randomised, prospective trial. Acta Oph- thalmol 2015;93:154-9
  • Gadkar K, Pastuskovas CV, Le Couter JE et al. Design and phar- macokinetic characterization of novel antibody formats for ocular therapeutics. Investig Ophthalmol Vis Sci 2015;56:5390-400
  • Yanyali A, Aytug B, Horozoglu F, et al. Bevacizumab (Avastin) for diabetic macular edema in previously vitrectomized eyes. Am J Ophthalmol 2007; 144:124-6
  • Laugesen CS, Ostri C, Brynskov T, et al. Intravitrealranibizum- ab for diabetic macular oedema in previously vitrectomized eyes. Acta Ophthalmol 2017; 95:28-32
  • Koyanagi Y, Yoshida S, Kobayashi Y, et al. Comparison of the Effectiveness of Intravitreal Ranibizumab for Diabetic Macular Edema in Vitrectomized and Nonvitrectomized Eyes. Ophthalmo- logica 2016; 236:67-73
  • Chen YY, Chen PY, Chen FT, et al. Comparison of effi cacy ofi ntra- vitreal ranibizumab between non-vitrectomized and vitrectomized eyes with diabetic macular edema. Int Ophthalmol 2018;38:293-9
  • Bressler SB, Melia M, Glassman AR, et al. Diabetic Retinopathy Clinical Research Network. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina 2015; 35:2516-28
  • Hahn P. Successful treatment of neovascular age-related macular degeneration following single bevacizumab failure using afl iber- cept in a vitrectomized eye. Clin Ophthalmol 2014; 8: 2129-31
  • Jung JJ, Hoang QV, Yameen Arain MZ, et al. Afl ibercept anti-vas- cular endothelial growth factor therapy in vitrectomized eyes with neovascular age-related macular degeneration. Acta Ophthalmol 2016;94:249,50
  • Hariprasad SM, William FM, Gaurav KS, et al. Penetration phar- macokinetics of topically administered 0.5% moxifl oxacin oph- thalmic solution in human aqueous and vitreous. Arch Ophthalmol 2005;123(1):39-44
  • Fuller JJ, McGwin G Jr. Phakic status affects vitreous penetration of topical moxifl oxacin. Arch Ophthalmol 2006;124:749
  • Schmidt JC, Meyer CH, Mennel S. Pars-plana vitrectomy with an- terior chamber infusion via a paracentesis in pseudophakic eyes. Ophthalmologe 2007;104:222-5
  • Rahimy E, Khurana RN.Anterior segment migration of dexameth- asone implant: risk factors, complications, and management. Curr Opin Ophthalmol 2017;28:246-51
  • Kocak N, Ozturk T, Karahan E, et al. Anterior migration of dexa- methasone implant in a pseudophakic patient with intact posterior capsule. Indian J Ophthalmol 2014;62:1086-8
  • Amoaku WM, Chakravarthy U, Gale R, et al. Defi ning re- sponse to anti-VEGF therapies in neovascular AMD Eye (Lond). 2015;29:721-31
APA KERİMOĞLU H (2018). Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. , 307 - 313.
Chicago KERİMOĞLU Hürkan Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. (2018): 307 - 313.
MLA KERİMOĞLU Hürkan Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. , 2018, ss.307 - 313.
AMA KERİMOĞLU H Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. . 2018; 307 - 313.
Vancouver KERİMOĞLU H Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. . 2018; 307 - 313.
IEEE KERİMOĞLU H "Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları." , ss.307 - 313, 2018.
ISNAD KERİMOĞLU, Hürkan. "Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları". (2018), 307-313.
APA KERİMOĞLU H (2018). Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. Retina-Vitreus, 27(4), 307 - 313.
Chicago KERİMOĞLU Hürkan Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. Retina-Vitreus 27, no.4 (2018): 307 - 313.
MLA KERİMOĞLU Hürkan Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. Retina-Vitreus, vol.27, no.4, 2018, ss.307 - 313.
AMA KERİMOĞLU H Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. Retina-Vitreus. 2018; 27(4): 307 - 313.
Vancouver KERİMOĞLU H Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları. Retina-Vitreus. 2018; 27(4): 307 - 313.
IEEE KERİMOĞLU H "Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları." Retina-Vitreus, 27, ss.307 - 313, 2018.
ISNAD KERİMOĞLU, Hürkan. "Vitrektomize Gözlerde İntravitreal Anti-VEGF İlaç Enjeksiyonları". Retina-Vitreus 27/4 (2018), 307-313.