Yıl: 2018 Cilt: 48 Sayı: 4 Sayfa Aralığı: 892 - 900 Metin Dili: İngilizce DOI: 10.3906/sag-1803-223 İndeks Tarihi: 21-06-2019

Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation

Öz:
Background/aim: Hyperoxia- and inflammation-induced lung injury is an important cause of the development of bronchopulmonarydysplasia (BPD) in premature infants. We aimed to ascertain the beneficial effects of ginger (Zingiber officinale) on rat pups exposed tohyperoxia and inflammation.Materials and methods: Thirty-six newborn Wistar rats were randomly divided into 3 groups as the hyperoxia (95% O2) +lipopolysaccharide (LPS) group, the hyperoxia + LPS + ginger-treated group, and the control/no treatment group (21% O2). Pups in thehyperoxia + LPS + ginger group were administered oral ginger at a dose of 1000 mg/kg daily during the study period. Histopathologic,immunochemical (SMA and lamellar body), and biochemical evaluations including total antioxidant status (TAS), total oxidantstatus (TOS), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β),interleukin-6 (IL-6), and caspase-3 activities were performed.Results: Better weight gain and survival rates were shown in the hyperoxia + LPS + ginger group (P < 0.05). In the histopathologicand immunochemical evaluation, severity of lung damage was significantly reduced in the hyperoxia + LPS + ginger group, as wellas decreased apoptosis (ELISA for caspase-3) (P < 0.05). Tissue TAS levels were significantly protected, and TOS, MDA, and MPOlevels were significantly lower in the hyperoxia + LPS + ginger group (P < 0.05). Tissue TNF-α, IL-1β, and IL-6 concentrations weresignificantly decreased in the ginger-treated group (P < 0.05).Conclusion: Ginger efficiently reduced the lung damage and protected the lungs from severe damage due to hyperoxia and inflammation.Therefore, ginger may be an alternative option for the treatment of BPD.
Anahtar Kelime:

Konular: Cerrahi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Van Marter LJ. Epidemiology of bronchopulmonary dysplasia. Semin Fetal Neonatal Med 2009; 14: 358-366.
  • Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD, Laptook AR, Bell EF, Stoll BJ, Newman N et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev 2012; 88: 509-515.
  • Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sánchez PJ, Van Meurs KP, Wyckoff M et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 2015; 314: 1039-1051.
  • EXPRESS Group. Incidence of and risk factors for neonatal morbidity after active perinatal care: Extremely Preterm Infants Study in Sweden (EXPRESS). Acta Paediatr 2010; 99: 978-992.
  • Niedermaier S, Hilgendorff A. Bronchopulmonary dysplasia - an overview about pathophysiologic concepts. Mol Cell Pediatr 2015; 2: 2.
  • Shahzad T, Radajewski S, Chao CM, Bellusci S, Ehrhardt H. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 2016; 3: 23.
  • Tropea K, Christou H. Current pharmacologic approaches for prevention and treatment of bronchopulmonary dysplasia. Int J Pediatr 2012; 2012: 598606.
  • Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, Afzal I, Hussain I, Bilal S, Mir MU. A review on pharmacological properties of zingerone (4-(4-hydroxy-3-methoxyphenyl)-2- butanone). Sci World J 2015; 2015: 816364.
  • Xie X, Sun S, Zhong W, Soromou LW, Zhou X, Wei M, Ren Y, Ding Y. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2014; 19: 103-109.
  • Vahdat Shariatpanahi Z, Mokhtari M, Taleban FA, Alavi F, Salehi Surmaghi MH, Mehrabi Y, Shahbazi S. Effect of enteral feeding with ginger extract in acute respiratory distress syndrome. J Crit Care 2013; 28: 217.e1-6.
  • Shin IS, Lee MY, Jeon WY, Shin NR, Seo CS, Ha H. EBM84 attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma. Int J Mol Med 2013; 31: 982-988.
  • Tao Y, Li W, Liang W, Van Breemen RB. Identification and quantification of gingerols and related compounds in ginger dietary supplements using high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 2009; 57: 10014-10021.
  • Ghasemzadeh A, Jaafar HZ, Rahmat A. Changes in antioxidant and antibacterial activities as well as phytochemical constituents associated with ginger storage and polyphenol oxidase activity. BMC Complement Altern Med 2016; 16: 382.
  • Salihu M, Ajayi BO, Adedara IA, Farombi EO. 6-Gingerolrich fraction from Zingiber officinale prevents hematotoxicity and oxidative damage in kidney and liver of rats exposed to carbendazim. J Diet Suppl 2016; 13: 433-448.
  • Amri M, Touil-Boukoffa C. In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. Asian Pac J Trop Med 2016; 9: 749-756.
  • Cheong KO, Shin DS, Bak J, Lee C, Kim KW, Je NK, Chung HY, Yoon S, Moon JO. Hepatoprotective effects of zingerone on carbon tetrachloride- and dimethylnitrosamine-induced liver injuries in rats. Arch Pharm Res 2016; 39: 279-291.
  • Molahosseini A, Taghavi MM, Taghipour Z, Shabanizadeh A, Fatehi F, Kazemi Arababadi M, Eftekhar Vaghefe SH. The effect of the ginger on the apoptosis of hippochampal cells according to the expression of BAX and Cyclin D1 genes and histological characteristics of brain in streptozotocin male diabetic rats. Cell Mol Biol (Noisy-le-grand) 2016; 62: 1-5.
  • Choi CW, Lee J, Oh JY, Lee SH, Lee HJ, Kim BI. Protective effect of chorioamnionitis on the development of bronchopulmonary dysplasia triggered by postnatal systemic inflammation in neonatal rats. Pediatr Res 2016; 79: 287-94.
  • Ni W, Lin N, He H, Zhu J, Zhang Y. Lipopolysaccharide induces up-regulation of TGF-α through HDAC2 in a rat model of bronchopulmonary dysplasia. PLoS One 2014; 9: e91083.
  • Yang M, Liu C, Jiang J, Zuo G, Lin X, Yamahara J, Wang J, Li Y. Ginger extract diminishes chronic fructose consumptioninduced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats. BMC Complement Altern Med 2014; 14: 174.
  • Rong X, Peng G, Suzuki T, Yang Q, Yamahara J, Li Y. A 35- day gavage safety assessment of ginger in rats. Regul Toxicol Pharmacol 2009; 54: 118-123.
  • Askenazi SS, Perlman M. Pulmonary hypoplasia: lung weight and radial alveolar count as criteria of diagnosis. Arch Dis Child 1979; 54: 614-618.
  • Ozer E, Sis B, Ozen E, Sakizli M, Canda T, Sarioglu S. BRCA1, c-erbB-2 and H-ras gene expressions in young women with breast cancer: an immunohistochemical study. Appl Immunohistochem Mol Morphol 2000; 8: 12-18.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275.
  • Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38: 1103-1111.
  • Draper HH, HadleyM. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186: 421-431.
  • Tihan DN, Erbil Y, Seven R, Arkaya S, Türkoğlu U, Hepgül G, Borucu I. The effect of glutamine on oxidative damage in an experimental abdominal compartment syndrome model in rats. Turkish Journal of Trauma and Emergency Surgery 2011; 17: 1-8.
  • Hartling L, Liang Y, Lacaze-Masmonteil T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and metaanalysis. Arch Dis Child Fetal Neonatal Ed 2012; 97: F8-F17.
  • Jónsson B, Li YH, Noack G, Brauner A, Tullus K. Down regulatory cytokines in tracheobronchial aspirate fluid from infants with chronic lung disease of prematurity. Acta Paediatr 2000; 89: 1375-1380.
  • Keane MP, Strieter RM. The importance of balanced proinflammatory and anti- inflammatory mechanisms in diffuse lung disease. Respir Res 2002; 3: 5.
  • Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ. Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res 1996; 40: 250-256.
  • Paananen R, Husa AK, Vuolteennaho R, Herva R, Kaukola T, Hallman M. Blood cytokines during the perinatal period in very premature infants: relationship of inflammatory response and bronchopulmonary dysplasia. J Pediatr 2009; 154: 39-43. e3.
  • Tayman C, Cekmez F, Kafa IM, Canpolat FE, Cetinkaya M, Tonbul A, Uysal S, Tunc T, Sarici SU. Protective effects of Nigella sativa oil in hyperoxia-induced lung injury. Arch Bronconeumol 2013; 49: 15-21.
  • Kettle AJ, Winterbourn CC. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep 1997; 3: 3-15.
  • Wright RM, Ginger LA, Kosila N, Elkins ND, Essary B, McManaman JL, Repine JE. Mononuclear phagocyte xanthine oxidoreductase contributes to cytokine-induced acute lung injury. Am J Respir Cell Mol Biol 2004; 30: 479-490.
  • Lee JW, Davis JM. Future applications of antioxidants in premature infants. Curr Opin Pediatr 2011; 23: 161-166.
  • Albertine KH, Plopper CG. DNA oxidation or apoptosis: will the real culprit of DNA damage in hyperoxic lung injury please stand up? Am J Respir Cell Mol Biol 2002; 26: 381-383.
  • Manar MH, Brown MR, Gauthier TW, Brown LA. Association of glutathione-S-transferase-P1 (GST-P1) polymorphisms with bronchopulmonary dysplasia. J Perinatol 2004; 24: 30.
  • Höferl M, Stoilova I, Wanner J, Schmidt E, Jirovetz L, Trifonova D, Stanchev V, Krastanov A. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat Prod Commun 2015; 10: 1085-1090.
  • Ghlissi Z, Atheymen R, Boujbiha MA, Sahnoun Z, Makni Ayedi F, Zeghal K, El Feki A, Hakim A. Antioxidant and androgenic effects of dietary ginger on reproductive function of male diabetic rats. Int J Food Sci Nutr 2013; 64: 974-978.
  • Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 1998; 29: 710.
  • Ko JK, Leung CC. Ginger extract and polaprezinc exert gastroprotective actions by anti-oxidant and growth factor modulating effects in rats. J Gastroenterol Hepatol 2010; 25: 1861-1868.
  • Das KC, Ravi D, Holland W. Increased apoptosis and expression of p21 and p53 in premature infant baboon model of bronchopulmonary dysplasia. Antioxid Redox Signal 2004; 6: 109-116.
APA ÇIFCI A, Tayman C, YAKUT H, halil h, Cakir E, CAKIR U, AYDEMİR S (2018). Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. , 892 - 900. 10.3906/sag-1803-223
Chicago ÇIFCI ATILLA,Tayman Cuneyt,YAKUT HALİL İBRAHİM,halil halit,Cakir Esra,CAKIR Ufuk,AYDEMİR SALİH Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. (2018): 892 - 900. 10.3906/sag-1803-223
MLA ÇIFCI ATILLA,Tayman Cuneyt,YAKUT HALİL İBRAHİM,halil halit,Cakir Esra,CAKIR Ufuk,AYDEMİR SALİH Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. , 2018, ss.892 - 900. 10.3906/sag-1803-223
AMA ÇIFCI A,Tayman C,YAKUT H,halil h,Cakir E,CAKIR U,AYDEMİR S Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. . 2018; 892 - 900. 10.3906/sag-1803-223
Vancouver ÇIFCI A,Tayman C,YAKUT H,halil h,Cakir E,CAKIR U,AYDEMİR S Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. . 2018; 892 - 900. 10.3906/sag-1803-223
IEEE ÇIFCI A,Tayman C,YAKUT H,halil h,Cakir E,CAKIR U,AYDEMİR S "Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation." , ss.892 - 900, 2018. 10.3906/sag-1803-223
ISNAD ÇIFCI, ATILLA vd. "Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation". (2018), 892-900. https://doi.org/10.3906/sag-1803-223
APA ÇIFCI A, Tayman C, YAKUT H, halil h, Cakir E, CAKIR U, AYDEMİR S (2018). Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turkish Journal of Medical Sciences, 48(4), 892 - 900. 10.3906/sag-1803-223
Chicago ÇIFCI ATILLA,Tayman Cuneyt,YAKUT HALİL İBRAHİM,halil halit,Cakir Esra,CAKIR Ufuk,AYDEMİR SALİH Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turkish Journal of Medical Sciences 48, no.4 (2018): 892 - 900. 10.3906/sag-1803-223
MLA ÇIFCI ATILLA,Tayman Cuneyt,YAKUT HALİL İBRAHİM,halil halit,Cakir Esra,CAKIR Ufuk,AYDEMİR SALİH Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turkish Journal of Medical Sciences, vol.48, no.4, 2018, ss.892 - 900. 10.3906/sag-1803-223
AMA ÇIFCI A,Tayman C,YAKUT H,halil h,Cakir E,CAKIR U,AYDEMİR S Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turkish Journal of Medical Sciences. 2018; 48(4): 892 - 900. 10.3906/sag-1803-223
Vancouver ÇIFCI A,Tayman C,YAKUT H,halil h,Cakir E,CAKIR U,AYDEMİR S Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turkish Journal of Medical Sciences. 2018; 48(4): 892 - 900. 10.3906/sag-1803-223
IEEE ÇIFCI A,Tayman C,YAKUT H,halil h,Cakir E,CAKIR U,AYDEMİR S "Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation." Turkish Journal of Medical Sciences, 48, ss.892 - 900, 2018. 10.3906/sag-1803-223
ISNAD ÇIFCI, ATILLA vd. "Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation". Turkish Journal of Medical Sciences 48/4 (2018), 892-900. https://doi.org/10.3906/sag-1803-223