Yıl: 2018 Cilt: 6 Sayı: 2 Sayfa Aralığı: 63 - 71 Metin Dili: Türkçe DOI: 10.21541/apjes.403727 İndeks Tarihi: 05-02-2019

Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi

Öz:
Tümör içi genomik heterojenlik kanserlerde sıkça karşılaşılan bir durumdur. Normal şartlarda her bir hücrede her birgenin iki kopyası vardır ve bazı istisnalar dışında organizmanın farklı hücreleri aynı DNA dizisini taşır. Kanserhücrelerinde ise gerek mutasyonlar sonucu gerekse de DNA silinmeleri ve eklenmeleri sonucu bu düzenli yapı karmaşıkve heterojen bir yapıya dönüşür. Bu genetik heterojenliğin sebebi ve tümör oluşumundaki rolü, genetik veri üretebilmeteknolojilerindeki gelişmeler ışığında son zamanlarda çokça çalışılan önemli bir problemdir. Aynı tümörden eldeedilmiş yüksek çözünürlüklü homojen numuneler, heterojenliği anlamak için yapılan çalışmalarda büyük önem arzetmektedir. Gerek kanser dokusuna erişimdeki zorluklar, gerekse de finansal limitler böyle yüksek çözünürlüklü verisetlerinin elde edilmesi önünde engel oluşturmaktadır. Glioblastoma multiforme teşhis sonrası ortalama yaşam süresiyaklaşık on beş ay olan, en sık görülen ve en agresif beyin tümörüdür. Bu çalışmada bir glioblastoma hastasından alınandetaylı homojen ve heterojen numuneler kullanılarak elde edilmiş yüksek çözünürlüklü bir veri seti incelenip, yapılananalizler sunulacaktır.
Anahtar Kelime:

Konular: Genetik ve Kalıtım

Analysis of Homogeneous Glioblastoma Samples with High-Resolution Genomic Technologies

Öz:
Intra-tumor genomic heterogeneity is a common feature in human cancers. Normally, there are two copies of each gene in a cell and all cells of an organism carries the same DNA sequence despite some exceptions. With mutations and copy number changes in cancer , this well-defined structure is impaired and transformed into a chaotic structure. Cause of these transformations and their role in tumor development and maintenance is an important problem of oncology. Recent technological improvements allow generation of high-resolution genomic data which can be utilized to address this problem. Obtaining high-resolution homogeneous samples that are obtained from a single cancer is critical to study intra-tumor genomic heterogeneity. Both experimental and financial limitations create difficulties in obtaining detailed data sets that includes such samples. Gioblastoma multiforme is the most common and most aggressive brain tumor with a median survival of fifteen months post diagnosis. In this manuscript, analysis results of a data set that includes high-resolution homogeneous and heterogeneous samples from a glioblastoma patient will be presented.
Anahtar Kelime:

Konular: Genetik ve Kalıtım
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • M. Baysan et al., "G-Cimp Status Prediction Of Glioblastoma Samples Using mRNA Expression Data," PloS ONE, vol. 7, no. 11, p. e47839, 2012
  • B. E. Johnson et al., "Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma," Science, vol. 343, no. 6167, pp. 189-193, 2014.
  • T. M. Brown and E. Fee, "Rudolf Carl Virchow: medical scientist, social reformer, role model," American Journal of Public Health, vol. 96, no. 12, p. 2104, 2006.
  • S. Makino, "Further evidence favoring the concept of the stem cell in ascites tumors of rats," Annals of the New York Academy of Sciences, vol. 63, no. 5, pp. 818-830, 1956.
  • G. H. Heppner and B. E. Miller, "Tumor heterogeneity: biological implications and therapeutic consequences," Cancer and Metastasis Reviews, vol. 2, no. 1, pp. 5-23, 1983.
  • I. J. Fidler and M. L. Kripke, "Metastasis results from preexisting variant cells within a malignant tumor," Science, vol. 197, no. 4306, pp. 893-895, 1977
  • I. J. Fidler, "Tumor heterogeneity and the biology of cancer invasion and metastasis," Cancer research, vol. 38, no. 9, pp. 2651-2660, 1978.
  • N. Navin et al., "Tumour evolution inferred by single-cell sequencing," Nature, vol. 472, no. 7341, pp. 90-94, 2011
  • M. Gerlinger et al., "Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing," Nature genetics, vol. 46, no. 3, pp. 225-233, 2014.
  • J. Zhang et al., "Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing," Science, vol. 346, no. 6206, pp. 256-259, 2014.
  • L. H. Mengelbier et al., "Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer," Nat Commun, vol. 6, p. 6125, 2015
  • N. McGranahan and C. Swanton, "Biological and Therapeutic Impact of Intratumor Heterogeneity in Cancer Evolution," Cancer cell, vol. 27, no. 1, pp. 15-26, 2015.
  • D. R. Johnson and B. P. O’Neill, "Glioblastoma survival in the United States before and during the temozolomide era," Journal of neuro-oncology, vol. 107, no. 2, pp. 359-364, 2012.
  • D. R. Johnson, H. E. Leeper, and J. H. Uhm, "Glioblastoma survival in the United States improved after Food and Drug Administration approval of bevacizumab: A population‐based analysis," Cancer, vol. 119, no. 19, pp. 3489-3495, 2013.
  • P. Y. Wen and S. Kesari, "Malignant gliomas in adults," New England Journal of Medicine, vol. 359, no. 5, pp. 492-507, 2008
  • V. Jung et al., "Evidence of focal genetic microheterogeneity in glioblastoma multiforme by area-specific CGH on microdissected tumor cells," Journal of Neuropathology & Experimental Neurology, vol. 58, no. 9, pp. 993-999, 1999.
  • M. Snuderl et al., "Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma," Cancer cell, vol. 20, no. 6, pp. 810-817, 2011.
  • N. J. Szerlip et al., "Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response," Proceedings of the National Academy of Sciences, vol. 109, no. 8, pp. 3041-3046, 2012
  • A. Sottoriva et al., "Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics," Proceedings of the National Academy of Sciences, vol. 110, no. 10, pp. 4009-4014, 2013.
  • A. P. Patel et al., "Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma," Science, vol. 344, no. 6190, pp. 1396-1401, 2014.
  • A. L. Vital et al., "Intratumoral patterns of clonal evolution in gliomas," Neurogenetics, vol. 11, no. 2, pp. 227-239, 2010
  • K. Harada, T. Nishizaki, S. Ozaki, H. Kubota, H. Ito, and K. Sasaki, "Intratumoral cytogenetic heterogeneity detected by comparative genomic hybridization and laser scanning cytometry in human gliomas," Cancer research, vol. 58, no. 20, pp. 4694-4700, 1998.
  • S. L. Carter et al., "Absolute quantification of somatic DNA alterations in human cancer," Nature biotechnology, vol. 30, no. 5, pp. 413-421, 2012.
  • A. Roth et al., "PyClone: statistical inference of clonal population structure in cancer," Nature methods, vol. 11, no. 4, pp. 396-398, 2014.
  • N. Andor, J. V. Harness, S. Mueller, H. W. Mewes, and C. Petritsch, "EXPANDS: expanding ploidy and allele frequency on nested subpopulations," Bioinformatics, vol. 30, no. 1, pp. 50-60, 2014.
  • L. Ding et al., "Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing," (in eng), Nature, vol. 481, no. 7382, pp. 506-10, Jan 2012
  • M. Baysan et al., "Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence," International journal of cancer, vol. 141, no. 10, pp. 2002-2013, 2017.
  • T. I. Zack et al., "Pan-cancer patterns of somatic copy number alteration," Nature genetics, vol. 45, no. 10, pp. 1134-1140, 2013
APA baysan m (2018). Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. , 63 - 71. 10.21541/apjes.403727
Chicago baysan mehmet Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. (2018): 63 - 71. 10.21541/apjes.403727
MLA baysan mehmet Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. , 2018, ss.63 - 71. 10.21541/apjes.403727
AMA baysan m Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. . 2018; 63 - 71. 10.21541/apjes.403727
Vancouver baysan m Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. . 2018; 63 - 71. 10.21541/apjes.403727
IEEE baysan m "Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi." , ss.63 - 71, 2018. 10.21541/apjes.403727
ISNAD baysan, mehmet. "Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi". (2018), 63-71. https://doi.org/10.21541/apjes.403727
APA baysan m (2018). Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE, 6(2), 63 - 71. 10.21541/apjes.403727
Chicago baysan mehmet Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE 6, no.2 (2018): 63 - 71. 10.21541/apjes.403727
MLA baysan mehmet Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE, vol.6, no.2, 2018, ss.63 - 71. 10.21541/apjes.403727
AMA baysan m Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE. 2018; 6(2): 63 - 71. 10.21541/apjes.403727
Vancouver baysan m Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi. ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE. 2018; 6(2): 63 - 71. 10.21541/apjes.403727
IEEE baysan m "Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi." ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE, 6, ss.63 - 71, 2018. 10.21541/apjes.403727
ISNAD baysan, mehmet. "Homojen Glioblastoma Örneklerinin Yüksek Çözünürlüklü Genetik Teknolojiler ile Analizi". ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE 6/2 (2018), 63-71. https://doi.org/10.21541/apjes.403727