Yıl: 2018 Cilt: 8 Sayı: 1 Sayfa Aralığı: 13 - 23 Metin Dili: İngilizce İndeks Tarihi: 07-02-2019

Al-Si-Mg Foam Produced by 3D Printer

Öz:
Al89.5Si10Mg0.5 metallic foam was produced by 3D metal printer. The designpattern has a triangular-like structure and it consists of aligned wires. The structure wasdesigned so that the distance between wires is 1 mm and the wire diameter is 1.2 mm.X-ray results showed that sample has a cubic structure with nm grains. Also, detailedelement mapping indicated that sample has a homogenous distribution state of thereinforcement throughout the Al matrix, which also a clear indication of single phase.Compressive stress–strain curves shows the typical compressive behaviour of metallicfoams consists of a narrow linear elastic area followed by a plateau regime and then asharp increase.
Anahtar Kelime:

3D Yazıcı Tarafından Üretilen Al-Si-Mg Köpük

Öz:
Al89.5Si10Mg0.5 metalik köpük 3D metal yazıcı ile üretildi. Tasarım deseni üçgen benzeri bir yapıya sahiptir ve hizalanmış tellerden oluşur. Yapı, teller arasındaki mesafe 1 mm ve tel çapı 1.2 mm olacak şekilde tasarlanmıştır. X-ışını sonuçları numunenin nm tanecikli kübik bir yapıya sahip olduğunu gösterdi. Ayrıca, detaylı element haritalaması ile numunenin Al matrisi boyunca homojen bir dağılım durumuna sahip olduğunu ve aynı zamanda tek faza sahip olduğu belirtildi. Basınca bağlı gerilme-şekil değiştirme eğrileri, dar bir doğrusal elastik alan boyunca keskin bir artış meydana getirdiği, dolayısıyla bu da metalik köpüklerin tipik basınç davranışı özelliğini göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46, 559, 2001.
  • Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., Processing of biocompatible porous Ti and Mg, Scripta Materialia, 45, 1147, 2001.
  • Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorenseni A. E., Lian, J., Greer, J. R., Valdevit, L., Carter, W. B., Ultralight metallic microlattices, Metallic Microlattices Science, 334, 962, 2011.
  • Ubertalli, G., Ferraris, M., Bangash, M. K., Joining of AL-6016 to Al-foam using Zn-based joining materials, Composites Part A - Applied Science and Manufacturing, 96, 122, 2017.
  • Giani, L., Groppi, G., Tronconi, E., Heat transfer characterization of metallic foams, Industrial & Engineering Chemistry Research, 44, 9078, 2005.
  • Lefebvre, L. P., Banhart, J., Dunand, D. C., Porous metals and metallic foams: Current status and recent developments, Advanced Engineering Materials, 10 (9), 775, 2008.
  • Kroupova, I., Bednarova, V., Elbel, T., F. Radkovsky, F., Proposal of method of removal of mould material from the fine structure of metallic foams used as filters, Archives of Metallurgy and Materials, 59 (2), 727, 2014.
  • Ashby, M. F., Lu, T. J., Metal foams: A survey, Science in China Series BChemistry, 46 (6), 521, 2003.
  • Santosa, S., Wierzbicki, T., Crash behavior of box columns filled with aluminum honeycomb or foam, Computers & Structures, 68 (4), 343, 1998.
  • Taherishargh, M., Belova, I. V., Murch, G. E., Fiedler, T., Pumice/aluminium syntactic foam, Materials Science & Engineering A, 635, 102, 2015.
  • Jinnapat, A., Kennedy, A., The manufacture and characterisation of aluminium foams made by investment casting using dissolvable spherical sodium chloride bead preforms, Metals, 1, 49-64, 2011.
  • Brothers, A. H., Dunand, D. C., Ductile bulk metallic glass foams, Advanced Materials, 17 (4), 484, 2005.
  • Yang, S. F., Chiu, W. T., Wang, T. M., Chen, C. T., Tzeng, C. C., Porous materials produced from incineration ash using thermal plasma technology, Waste Management, 34, 1079, 2014.
  • Kroupova, I., Lichı, P., Radkovskı, F., Beoo, J., Bednáøová, V., Lána, I., Optimization of the annealing of plaster moulds for the manufacture of metallic foams with an irregular cell structure, Materials and Technology, 49 (4), 527, 2015.
  • Sivashankar, S., Agambayev, S., Alamoudi, K., Buttner, U., Khashab, N., Salama, K. N., Compatibility analysis of 3D printer resin for biological applications, Micro & Nano Letters, 11 (10), 654, 2016.
  • Gaal, G., Mendes, M., De Almeida, T. P., Piazetta, M. H. O., Gobbi, A. L., Riul, A., Rodrigues, V., Simplified fabrication of integrated microfluidic devices using fused deposition modelling 3D printing, Sensors and Actuators B-Chemical, 242, 35, 2017.
  • Zhang, D., Chi, B. H., Li, B. W., Gao, Z. W., Du, Y., Guo, J. B., Wei, J., Fabrication of highly conductive graphene flexible circuits by 3D printing, Synthetic Metals, 217, 79, 2016.
  • Andrews, E., Sanders, W., Gibson, L. J., Compressive and tensile behaviour of aluminum foams, Materials Science and Engineering A, 270 (2), 113, 1999.
  • Ramamurty, U., Paul, A., Variability in mechanical properties of metal foam, Acta Materialia, 52 (4), 869, 2004.
  • Duos, E. B., Weisgraber, T. H., Hearon, K., Zhu, C., Small, W., Metz, W., Vericella, J. J., Barth, H. D., Kuntz, J. D., Maxwell, R. S., Spadaccini, C. M., Wilson, T. S., Three-dimensional printing of elastomeric, cellular architectures with negative stiffness, Advanced Functional Materials, 24, 4905, 2014.
  • Michailidis, N., Stergioudi, F., Tsouknidas, A., Deformation and energy absorption properties of powder-metallurgy produced Al foams, Materials Science and Engineering A, 528, 7222, 2011.
  • Fathy, A., Abdelaziem, W., Hassan, M., Microstructure evolution and mechanical properties of Al/Al-12%Si multilayer processed by accumulative roll bonding (ARB), Materials Science and Engineering A, 647, 127-135, 2015.
  • www.shapeways.com
  • Atalay, S., Adiguzel, H. I., Atalay, F., Infrared absorption study of Fe2O3-CaOSiO2 glass ceramics, Materials Science and Engineering A, 304, 796-799, 2001.
APA ATALAY S, Bayri N, KAYA H, izgi t, KOLAT V (2018). Al-Si-Mg Foam Produced by 3D Printer. , 13 - 23.
Chicago ATALAY Selçuk,Bayri Nevzat,KAYA Harun,izgi tekin,KOLAT V. Serkan Al-Si-Mg Foam Produced by 3D Printer. (2018): 13 - 23.
MLA ATALAY Selçuk,Bayri Nevzat,KAYA Harun,izgi tekin,KOLAT V. Serkan Al-Si-Mg Foam Produced by 3D Printer. , 2018, ss.13 - 23.
AMA ATALAY S,Bayri N,KAYA H,izgi t,KOLAT V Al-Si-Mg Foam Produced by 3D Printer. . 2018; 13 - 23.
Vancouver ATALAY S,Bayri N,KAYA H,izgi t,KOLAT V Al-Si-Mg Foam Produced by 3D Printer. . 2018; 13 - 23.
IEEE ATALAY S,Bayri N,KAYA H,izgi t,KOLAT V "Al-Si-Mg Foam Produced by 3D Printer." , ss.13 - 23, 2018.
ISNAD ATALAY, Selçuk vd. "Al-Si-Mg Foam Produced by 3D Printer". (2018), 13-23.
APA ATALAY S, Bayri N, KAYA H, izgi t, KOLAT V (2018). Al-Si-Mg Foam Produced by 3D Printer. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 8(1), 13 - 23.
Chicago ATALAY Selçuk,Bayri Nevzat,KAYA Harun,izgi tekin,KOLAT V. Serkan Al-Si-Mg Foam Produced by 3D Printer. Adıyaman Üniversitesi Fen Bilimleri Dergisi 8, no.1 (2018): 13 - 23.
MLA ATALAY Selçuk,Bayri Nevzat,KAYA Harun,izgi tekin,KOLAT V. Serkan Al-Si-Mg Foam Produced by 3D Printer. Adıyaman Üniversitesi Fen Bilimleri Dergisi, vol.8, no.1, 2018, ss.13 - 23.
AMA ATALAY S,Bayri N,KAYA H,izgi t,KOLAT V Al-Si-Mg Foam Produced by 3D Printer. Adıyaman Üniversitesi Fen Bilimleri Dergisi. 2018; 8(1): 13 - 23.
Vancouver ATALAY S,Bayri N,KAYA H,izgi t,KOLAT V Al-Si-Mg Foam Produced by 3D Printer. Adıyaman Üniversitesi Fen Bilimleri Dergisi. 2018; 8(1): 13 - 23.
IEEE ATALAY S,Bayri N,KAYA H,izgi t,KOLAT V "Al-Si-Mg Foam Produced by 3D Printer." Adıyaman Üniversitesi Fen Bilimleri Dergisi, 8, ss.13 - 23, 2018.
ISNAD ATALAY, Selçuk vd. "Al-Si-Mg Foam Produced by 3D Printer". Adıyaman Üniversitesi Fen Bilimleri Dergisi 8/1 (2018), 13-23.