Yıl: 2018 Cilt: 7 Sayı: 1 Sayfa Aralığı: 159 - 167 Metin Dili: İngilizce İndeks Tarihi: 21-02-2019

Vibration Dynamics of H+F2 Reactive Scattering

Öz:
In this paper the vibration distributions of H+F2 reaction on the ground electronic state, which are important forchemical laser, have been examined. The HF molecule formed by this reaction has been examined depending onthe initial and final vibration states in particular collision energies. The results have been obtained using timedependent quantum mechanical Real Wave Packet (RWP) method on Potential Energy Surface (PES), which canbe given more realistic values in the strong interaction region. The state to state reaction distributions have beencalculated to be able to compare with both experimental results at the collision energy of 0.105 eV and QuasiClassicalTrajectories (QCT) results depended on LEPS potential at the collision energies of 0.494 eV and 0.086eV. Also in this study, the obtained rate constants have been compared by theoretical and experimental values inthe literature and are found to be in good agreement with each other.
Anahtar Kelime:

H+F2 Reaktif Saçılmanın Titreşim Dinamikleri

Öz:
Bu çalışmada kimyasal lazerler için önemli olan, taban elektronik durum üzerinde H+F2 reaksiyonunun titreşim dağılımları incelenmiştir. Reaksiyonla oluşan HF molekülü, belli çarpışma enerjilerinde, başlangıç ve son kuantum durumlarına bağlı olarak incelenmiştir. Sonuçlar, güçlü etkileşme bölgesinde daha gerçekçi değerleri verebilen potansiyel enerji yüzeyi üzerinde zamana bağlı kuantum mekaniksel Reel Dalga Paketi (RWP) kullanılarak elde edildi. Bir durumdan diğerine reaksiyon dağılımları, 0,105 eV luk deneysel sonuçlar ve 0,494 ve 0,086 eV luk Yarı Klasik İz metodu (QCT) sonuçları ile kıyaslayabilmek için hesaplandı. Ayrıca bu çalışmada, elde edilen hız sabitleri literatürde bulunan deneysel ve teorik değerlerle karşılaştırıldı ve birbirleri ile iyi uyumda oldukları belirlendi.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Morari C. 2001. Zeitabhangige Untersuchungen zu reaktiven Streuprozessen, der Universitat Siegen, der Naturwissenschaften, Siegen, 1.
  • Connor J.N.L. 1981. Isotope Effect and Chemical Reaction Dynamics of Muonium in the Gas Phase, Hyperfine Interactions, 8 :423-434.
  • Polanyi J.C. 1987. Some Concepts in Reaction Dynamics, Science, 236: 680-690.
  • Bittererova M., Biskupic S., Lischka H., Jakubetz W. 2000. The Barrier Topography of the H+F2 Potential Energy Surface, Physical Chemistry Chemical Physics, 2: 513-521.
  • Han J., Heaven M.C., Manke II G.C. 2002. Hydrogen Atom Reaction with Molecular Halogens: The Rate Constants for H+F2 and H+Cl 2 at 298 0K, Journal of Physical Chemistry A, 106: 8417- 8421.
  • Preub R., Peyerimhoff S.D., Buenker R.J. 1977. Structure and Stability of the HFF and FHF Radicals, Journal of Molecular Structure, 40: 117-126.
  • Tanaka T., Takayanagi T. 2010. Quantum Reactive Scattering Calculations of H+F2 and Mu+F2 Reaction on a new ab initio Potential Energy Surface, Chemical Physics Letters, 496: 248-253.
  • Sayos R., Gonzalez M., Aguilar A. 1990. Classical Dynamics of the O(3P)+CS(X1T+)• CO(X1T+)+ S(3P) Reaction on the Ground Triplet Potential Energy Surface, Chemical Physics, 141: 401-415.
  • Jonathan N., Melliar-Smith C.M., Slater D.H. 1970. Initial Vibrational Energy Level Populations Resulting from the Reaction H+F2 as Studied by Infrared Chemiluminescence, Journal of Chemical Physics, 53: 4396.
  • Polanyi J.C., Sloan J.J. 1972. Energy Distribution among Reaction Products VII. H+F2, Journal of Chemical Physics 57:4988.
  • Gimenez X., Lucas J.M., Aguilar A., Lagana A. 1993. Calculated versus Measured Vibrational State Specific Reactivity of H+F2, Journal of Physical Chemistry, 97: 8578-8582.
  • Jorji M., Honvault P. 2009. State-to-state quantum dynamical study of the N+OH  NO+H, Journal of Physical Chemistry A, 113: 2316-2322.
  • Lin S.Y., Guo H. 2004. Quantum Integral Cross-Section and Rate Constant of the O(1D) +H2 OH+H Reaction on a New Potential Energy Surface, Chemical Physics Letters, 385: 193-197.
  • Polanyi J.C, Schreiber J.L., Sloan J.J. 1975. Distribution of Reaction Products (theory). XI. H+F2, Chemical Physics, 9: 403.
  • Tardy D.C., Feezel L.L. 1988. Chemiluminescence mapping: pressure-pulse results for H(D) + F2 → HF(DF) + F, Chemical Physics, 119: 89.
  • Jonathan N., Okuda S., Timlin D. 1972. Initial vibrational energy distributions determined by infrared chemiluminescence, Molecular Physics, 24: 1143.
  • Albright R.G., Dodonov A.F., Lavrovskaya G.K., Morosov I.I., Tal’roze V.L. 1969. Mass‐ Spectrometric Determination of Rate Constants for H‐Atom Reactions with Cl2 and F2, The Journal of Chemical Physics, 50: 8.
  • Homman K.H., Schweinfurth H., Warnatz J. 1977. Rate Measurements for the Reaction of HAtoms with F2, Physical Chemistry, 81: 724-728.
  • Gimenez X., Luces J.M., Aguilar A., Lagana A. 1993. Calculated versus measured vibrational state specific reactivity of hydrogen atom + fluorine, Journal of Physical Chemistry, 97: 8578-8582.
  • Cohen N., Bott J.F. 1976. The Aerospace Corporation El Segundo, Los Angeles Calif. 90245, SAMSO-TR-76-82.
  • Gogtas F., Karabulut E., Tanaka T., Takayanagi T., Tutuk R. 2012. Real wave packet and flux analysis studies of the H+ F2→ HF+ F Reaction, International Journal of Quantum Chemistry, 112: 2348-2354.
  • Cohen N., Westberg K.R. 1983. Chemical Kinetics Data Sheets for High-Temperature Chemical Reaction, Journal of Physical Chemistry References Data, 12: 531.
APA KARABULUT E (2018). Vibration Dynamics of H+F2 Reactive Scattering. , 159 - 167.
Chicago KARABULUT EZMAN Vibration Dynamics of H+F2 Reactive Scattering. (2018): 159 - 167.
MLA KARABULUT EZMAN Vibration Dynamics of H+F2 Reactive Scattering. , 2018, ss.159 - 167.
AMA KARABULUT E Vibration Dynamics of H+F2 Reactive Scattering. . 2018; 159 - 167.
Vancouver KARABULUT E Vibration Dynamics of H+F2 Reactive Scattering. . 2018; 159 - 167.
IEEE KARABULUT E "Vibration Dynamics of H+F2 Reactive Scattering." , ss.159 - 167, 2018.
ISNAD KARABULUT, EZMAN. "Vibration Dynamics of H+F2 Reactive Scattering". (2018), 159-167.
APA KARABULUT E (2018). Vibration Dynamics of H+F2 Reactive Scattering. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(1), 159 - 167.
Chicago KARABULUT EZMAN Vibration Dynamics of H+F2 Reactive Scattering. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7, no.1 (2018): 159 - 167.
MLA KARABULUT EZMAN Vibration Dynamics of H+F2 Reactive Scattering. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.7, no.1, 2018, ss.159 - 167.
AMA KARABULUT E Vibration Dynamics of H+F2 Reactive Scattering. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2018; 7(1): 159 - 167.
Vancouver KARABULUT E Vibration Dynamics of H+F2 Reactive Scattering. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2018; 7(1): 159 - 167.
IEEE KARABULUT E "Vibration Dynamics of H+F2 Reactive Scattering." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7, ss.159 - 167, 2018.
ISNAD KARABULUT, EZMAN. "Vibration Dynamics of H+F2 Reactive Scattering". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7/1 (2018), 159-167.