2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi

Yıl: 2017 Cilt: 21 Sayı: 3 Sayfa Aralığı: 545 - 563 Metin Dili: Türkçe DOI: 10.16984/saufenbilder.270275 İndeks Tarihi: 01-03-2019

2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi

Öz:
Bu çalışmada, 2-metil-1h-benzimidazol 5 karboksilik asit (2M1HB5C) molekülü deneysel teknikler (FT-IR,Dispersive Raman, 1H ve 13C NMR spektrumu) ve teorik (DFT metodu) hesaplamalar kullanılarak incelendi.Titreşimsel spektrumlar (FT-IR ve dispersive-Raman) gibi deneysel sonuçlar, DFT (B3LYP) metodu ve cc-pVDZ bazseti kullanılarak hesaplanmış teorik sonuçlar ile desteklendi. Uyarılma enerjileri, osilatör şiddeti, dalga boyları, HOMOve LUMO enerjileri gibi elektronik özellikler araştırıldı. Ayrıca moleküler elektrostatik potansiyeli, termodinamiközellikleri hesaplandı ve natural bağ orbital analizi yapıldı. Sonuç olarak 2M1HB5C molekülünün teorik sonuçları,deneysel spektrumlar ile kıyaslandı ve aralarında iyi bir uyum olduğu görüldü.
Anahtar Kelime:

Theoretical and experimental investigation structural and vibrational spectra of 2-methyl-1h-benzimidazole-5-carboxylic acid molecule

Öz:
In this study, 2-methyl -1h-benzimidazole 5 carboxylic acid (2M1HB5C) molecule was investigated by using experimental (FT-IR, Dispersive Raman, 1H and 13C NMR spectra ) techniques and theoretical (DFT approach ) calculations. Experimental results such as vibrational (FT-IR and Dispersive-Raman) spectra were supported by the theoritical results obtained from DFT (B3LYP) method and cc-pVDZ basis set calculations. Electronic characteristics, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies were investigated for 2M1HB5C molecule. Furthermore, molecular electrostatic potential, natural bond orbital analysis and thermodynamic features were calculated. As a conclusion, the calculated results were compared with the experimental spectra of the 2M1HB5C molecule, which were in a good agreement with observed ones.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • E. Palosi, K. Dezso, M. Erzsebet, I. Szvoboda, H. Laszlo, S. Gyorgy, V. Sandor, G. Vera, M. Katalin, European Patent Appl. EP. 324, 988, Chem. Abstr., vol. 112, pp. 55864, 1990.
  • S. Ram, D.S. Wise, L.L. Wotring, J.W, McCall, L.B. Townsend, “Synthesis and biological activity of certain alkyl 5-(alkoxycarbonyl)-1H-benzimidazole-2- carbamates and related derivatives: a new class of potential antineoplastic and antifilarial agents”, J. Med. Chem., vol. 539, pp 539–547, 1992.
  • K. Kubo, Y. lnada, Y. Kohara, Y. Sugiura, M. Ojima, K. ltoh, Y. Furukawa, N. Nishikawa, T. Naka, “Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazole”, J. Med. Chem., vol. 36, pp 1772-1784, 1993.
  • D. Kumar, M.R. Jacob, M.B. Reynolds, S.M. Kerwin, “Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1”, Med. Chem., vol. 10, 3997–4004, 2002.
  • M. Boiani, M. Gonzalez, “Imidazole and Benzimidazole Derivatives as Chemotherapeutic Agents”, Mini Rev. Med. Chem. vol.25, pp. 409-424, 2005.
  • A. Hori, Y. Imaeda, K. Kubo, M. Kusaka, “Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo” M. Cancer Lett. vol. 183, pp. 53-60, 2002.
  • H.T. Abdel‐Mohsen, F.A.F. Ragab, M.M. Ramla, H.I. Diwani, “Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo”, Eur. J. Med. Chem, vol. 183, pp. 2336‐2344, 2010.
  • U. Velaparthi, P. Liu, B. Balasubramanian, J. Carboni, R. Attar, M. Gottardis, A. Li, A. Greer, M. Zoeckler, M.D. Wittman, D. Vyas, “Imidazole moiety replacements in the 3-(1H-benzodimidazol-2-yl)pyridin2(1H)-one inhibitors of insulin-like growth factor receptor-1 (IGF-1R) to improve cytochrome P450 profile”, Bioorg. Med. Chem. Lett., vol. 17, pp. 3072‐ 3076, 2007.
  • M.A. Pagano, M. Andrzejewska, M. Ruzzene, S. Sarno, L. Cesaro, J. Bain, M. Elliott, F. Meggio, Z. Kazimierczuk, L.A. Pinna, “Optimization of Protein Kinase CK2 Inhibitors Derived from 4,5,6,7- Tetrabromobenzimidazole”, J. Med. Chem., vol. 47, pp. 6239‐6247, 2004.
  • M.A. Pagano, F. Meggio, M. Ruzzene, M. Andrzejewska, Z. Kazimierczuk, L.A. Pinna, “2- Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole:a novel powerful and selective inhibitor of protein kinase CK2”, Biochem. Biophys. Res. Commun., vol. 321, pp. 1040‐1044, 2004.
  • D.K. Neff, A. Lee‐Dutra, J.M. Blevitt, F.U. Axe, M.D. Hack, J.C. Buma, R. Rynberg, A. Brunmark, L. Karlsson, G. Breitenbucher, “2-Aryl benzimidazoles featuring alkyl-linked pendant alcohols and amines as inhibitors of checkpoint kinase Chk2”, Bioorg.Med.Chem.Lett., vol. 17, pp. 6467‐6471, 2007.
  • K.L. Arienti, A. Brunmark, F.U. Axe, K. McClure, A. Lee, J. Blevitt, D.K. Neff, L. Huang, S. Crawford, C.R. Pandit, L. Karlsson, J.G. Breitenbucher, “Checkpoint Kinase Inhibitors: SAR and Radio protective Properties of a Series of 2- Arylbenzimidazoles”, J. Med. Chem., vol. 48, pp. 1873‐ 1885, 2005.
  • J.P. Hajduk, S. Boyd, D. Nettesheim, V. Nienaber, J. Severin, R. Smith, D. Davidson, T. Rockway, S.W. Fesik, “Privileged Molecules for Protein Binding Identified from NMR-Based Screening”, J. Med. Chem., vol. 43, pp. 3443-3447, 2000.
  • D. Kumar, M.R. Jacob, M.B. Reynolds, S.M. Kerwin, “Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1”, Bioorg.Med.Chem., vol. 10, pp. 3997–4004, 2002.
  • A.S. Aboraia, H.M. Abdel‐Rahman, N.M. Mahfouz, M.A. EL‐Gendy, “Novel 5-(2- hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4- oxadiazole-2-thione derivatives: Promising anticancer agents”, Bioorg.Med.Chem., vol.14, pp. 1236‐1246, 2006.
  • S. Ozbey, S. Ide, E. Kendi, “The crystal and molecular structure of two benzimidazole derivatives: 1- (phenylmethyl)-2-(4-methoxyphenylmethyl)-1Hbenzimidazole-5-carboxylic acid (I) and 1,2-di- (phenylmethyl)-1H-benzimidazole-5-carboxylic acid (II)”, Journal of Molecular Structure, vol. 442, pp. 23- 30,1998.
  • H. Göker, C. Kus, W.D. Boykin, S. Yildiz and N. Altanlar, “Synthesis of bi functionalised flavins for incorporation into well defined redox systems”, Bioorganic and Medicinal Chemistry, vol.10, pp. 2589- 2596, 2002.
  • S. Ozden, D. Atabey, S. Yildiz and H. Göker, “({4- [4-(1H-Benzimidazol-2-yl)phenyl]-1H-1,2,3-triazol-1- yl}methoxy) ethanol” Bioorganic and Medicinal Chemistry, vol.13, pp. 1587-1597, 2005.
  • E. Sahin, S. İde, M. Kurt, S. Yurdakul, “Structural investigation of dibromobis (benzimidazole) Zn(II) complex”, Journal of Molecular Structure, vol. 616, pp. 259-264, 2002.
  • S. Yurdakul, M. Kurt, “Molecular structure and vibrational spectra of 1,2-bis(4-pyridyl) ethane by density functional theory and ab initio Hartree-Fock calculations” Journal of Molecular Structure, vol. 650, pp. 181-190, 2003.
  • S. Sudha, M. Karabacak, M. Kurt, M. Cinar, N. Sundaraganesan, “FT-IR, FT-Raman, NMR and UV–vis spectra, vibrational assignments and DFT calculations of 4-butyl benzoic acid” Spectrochim Acta A, vol. 84, pp. 184-190, 2011.
  • M.T. Gulluoglu., M. Ozduran, M. Kurt, S. Kalaichelvan, N. Sundaraganesan, “Molecular structure and vibrational spectra of 2- and 5-methyl benzimidazole molecules by density functional theory”, Molecular and Biomolecular Spectroscopy, vol. 76, 107-114, 2010.
  • N. Sundaraganesan, S. Ilakiamani, P. Subramani, B.D. Joshua, “Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations”, Spectrochimica Acta A, vol. 67, pp. 628- 635, 2007.
  • S. Sudha, M. Karabacak, M. Kurt, M. Cınar, N. Sundaraganesan, “Molecular structure, vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 2-amino benzimidazole”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.84, pp. 184-195, 2010.
  • M.T. Gulluoglu, Y. Erdogdu, J. Karpagam, N. Sundaraganesan, S. Yurdakul, “DFT, FT-Raman, FT-IR and FT-NMR studies of 4-phenylimidazole”, Journal of Molecular Structure, vol. 990, pp. 14-20, 2011.
  • E. Babur Sas, M. Kurt, M. Karabacak, A. Poiyamozhi, N. Sundaraganesan, “Structural investigation of a self-assembled monolayer material 5- [(3-methylphenyl) (phenyl) amino] isophthalic acid for organic light-emitting devices”, Journal of Molecular Structure, vol. 1081, pp. 506-518, 2015.
  • M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cross, J.B. Cheeseman, Gaussian 09, Revision A. 1 edn, Gaussian. Inc., Wallingford, CT, 2009.
  • P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Physical Review, vol. 136, pp. B864, 1964.
  • A.D. Becke, “Density‐functional thermochemistry. III. The role of exact exchange”, Journal of Chemical Physics, vol. 98, pp. 5648, 1993.
  • M.H. Jamroz, “Vibrational Energy Distribution Analysis (VEDA):Scopes and limitations”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 114, pp. 220-230, 2013.
  • G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig, “Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethyl thiocarbamate”, Spectrochimica Acta Part A, vol. 49, pp. 1993, 2007.
  • G. Keresztury, J.M. Chalmers, P.R. Griffith (Eds.), “Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy”, vol. 1, John Wiley&Sons Ltd., New York, 2002.
  • R. Ditchfield, “Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility”, Journal of Chemical Physics, vol. 56, pp. 5688–5691, 1972.
  • K. Wolinski, J.F. Hinton, P. Pulay, “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations”, Journal of the American Chemical Society, vol. 112, pp. 8251– 8260, 1990.
  • N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, “A library for package-independent computational chemistry algorithms”, Journal of Computational Chemistry, vol. 29, pp. 839–845, 2008.
  • L-H. Cheng, Z. Zheng, Z-L. Han, Z-C. Wu, H-P. Zhou, “2-[4-(1H-1,2,4-Triazol-1-yl)phenyl]-1Hbenzimidazole”, Acta Crystallographica Section E, pp. 68, 2012.
  • P. Sinha, S. E. Boesch, C. Gu, R.A. Wheeler and A.K. Wilson, “Harmonic Vibrational Frequencies: Scaling Factors for HF, B3LYP, and MP2 Methods in Combination with Correlation Consistent Basis Sets”, The Journal of Physical Chemistry, vol. 108, pp. 9213-9217, 2004.
  • J. Coates, R.A. Meyers, “Introduction to Infrared Spectrum, A Practical Approach”,John Wiley and Sons Ltd, Chichester, 2000.
  • M. Karabacak, M. Kurt, A. Atac, “Experimental and theoretical FT-IR and FT-Raman spectroscopic analysis of N1-methyl-2-chloroaniline”, Journal of Physical Organic Chemistry, vol. 22, pp. 321-330, 2009.
  • G. Thilagavathi, M. Arivazhagan, “Density functional theory calculation and vibrational spectroscopy study of 2-amino-4,6-dimethyl pyrimidine (ADMP)”, Spectrochimica Acta, vol. 79A, pp. 389-395, 2010.
  • M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, “Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1- methoxynaphthalene” Spectrochimica Acta A, vol.79, pp. 646–653, 2011.
  • R. Shanmugam, D. Sathyanarayana, “Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene”, Spectrochimica Acta, vol.40A, pp. 757, 1984.
  • M. Govindarajan, M. Karabacak, A. Suvitha, S. Periandy, “FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO–LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene”, Spectrochimica Acta A, vol.89, pp. 137-148, 2012.
  • G. Varsanyi, “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, Halsted Press, 1974.
  • A. Fu, D. Du, Z. Zhou, “Density functional theory study of vibrational spectra of acridine and phenazine”, Spectrochimica Acta, vol. 59, pp. 245, 2003.
  • M. Karabacak, E. Sahin, M. Cinar, I. Erol, M. Kurt, “X-ray, FT-Raman, FT-IR spectra and ab initio HF, DFT calculations of 2-[(5-methylisoxazol-3-yl)amino]-2-oxoethyl methacrylate”, Journal of Molecular Structure, vol. 886, pp. 148-157, 2008.
  • N. Sundaraganesan, S. Ilakiamani, P. Subramani, B.D. Joshua, “Comparison of experimental and ab initio HF and DFT vibrational spectra of benzimidazole”, Spectrochimica Acta, vol. 67A, pp. 628-635, 2007.
  • Y. Wang, S. Saebo, C.U. Pittman, “The structure of aniline by ab initio studies”, Journal of Molecular Structure: THEOCHEM, vol. 281, pp. 91-98, 1993.
  • A. Altun, K. Golcuk, M. Kumru, “Structure and vibrational spectra of p-methylaniline: Hartree-Fock, MP2 and density functional theory studies”, Journal of Molecular Structure THEOCHEM, vol. 637 pp. 155– 169, 2003.
  • T. Sivaranjini, S. Periandy, M. Govindarajan, M. Karabacak, A.M. Asiri, “Spectroscopic (FT-IR, FTRaman and NMR) and computational studies on 3- methoxyaniline”, Journal of Molecular Structure, vol. 1056, pp. 176–188, 2014.
  • G. Socrates, “Infrared Characteristic Group Frequencies Tables and Charts”, 3rd Edition, John Wiley and Sons, New York, 1980.
  • D.A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media”, Physical Review, vol. 126, pp. 1962, 1977.
  • N.B. Colthup, L.H. Daly, S.E. Wiberly, “Introduction to Infrared and Raman Spectroscopy”, Academic Press, Third Edition New York, 1990.
  • B. Venkataram Reddy, G. Ramana Rao, “Transferable valence force fields for substituted benzenes: Part I. Monohalogenated anisoles”, Vibrational Spectroscopy, vol. 6, pp. 231-250, 1994.
  • P.B. Nagabalasubramanian, M. Karabacak, S. Periandy, “Vibrational frequencies, structural confirmation stability and HOMO–LUMO analysis of nicotinic acid ethyl ester with experimental (FT-IR and FT-Raman) techniques and quantum mechanical calculations”, Journal of Molecular Structure, vol. 1017, pp. 1-13, 2012.
  • D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules”, Academic Press, San Diego, 1991.
  • R.M. Silverstein, F.X. Webster, “Spectroscopic Identification of Organic Compound”, Sixth edition, John Willey&Sons, New York, 1998.
  • B. Smith, “Infrared Spectral Interpretation. A Systematic Approach”, CRC Press,Washington, DC, 1999.
  • C.R. Kumar, I.H Joe, V.S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: A vibrational approach”, Chemical Physics Letter, vol. 460, pp. 552-558, 2008.
  • E.D. Glendening, C.R. Landis, F. Weinhold, “Natural bond orbital methods”, Computational Molecular Science, vol. 2, pp. 1–42, 2011.
  • A.E. Reed, L.A. Curtiss, F. “Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint”, Chemical Review, vol. 88, pp. 899, 1988.
  • T. Schlick, “Molecular Modeling and Simulation: An Inter disciplinary Guide”, second edition, Springer, New York, 2010.
  • K. Fukui, “The Role of Frontier Orbitals in chemical reactions”, Science, vol. 218, pp. 747–754, 1982.
  • M. Arivazhagan, D. Anitha Rexalin, “FT-IR, FTRaman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline”, Spectrochimica Acta A, vol. 96, pp. 668–676, 2012.
  • R. Hoffman, “Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures”, Wiley- VCH Publisher, Newyork, 1988.
  • T. Hughbanks, R. Hoffmann, “Chains of trans-edgesharing molybdenum octahedra: metal-metal bonding in extended systems”, Journal of the American Chemical Society, vol. 105, pp. 3528–3537, 1983.
  • J.G. Małecki, “Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands”, Polyhedron, vol. 29, pp. 1973–1979, 2010.
  • M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, “A density functional study of clean and hydrogencovered α-MoO3(010):α-MoO3(010):Electronic structure and surface relaxation”, Journal of Chemical Physics, vol. 109, pp. 6854–6860, 1998.
  • J. Murray, K. Sen, “Molecular Electrostatic Potentials: Concepts and Applications”, 1 st edition, Elsevier, Amsterdam, 1996.
  • E. Scrocco, J. Tomasi, “Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials”, Advances in Quantum Chemistry, vol. 11, pp. 115-193, 1978.
  • J.B. Ott, J. Boerio-Goates, “Chemical Thermodynamics: Advanced Applications, Calculations from Statistical Thermodynamics”, Academic Press, 2000.
APA Tanış E (2017). 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. , 545 - 563. 10.16984/saufenbilder.270275
Chicago Tanış Emine 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. (2017): 545 - 563. 10.16984/saufenbilder.270275
MLA Tanış Emine 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. , 2017, ss.545 - 563. 10.16984/saufenbilder.270275
AMA Tanış E 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. . 2017; 545 - 563. 10.16984/saufenbilder.270275
Vancouver Tanış E 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. . 2017; 545 - 563. 10.16984/saufenbilder.270275
IEEE Tanış E "2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi." , ss.545 - 563, 2017. 10.16984/saufenbilder.270275
ISNAD Tanış, Emine. "2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi". (2017), 545-563. https://doi.org/10.16984/saufenbilder.270275
APA Tanış E (2017). 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 545 - 563. 10.16984/saufenbilder.270275
Chicago Tanış Emine 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no.3 (2017): 545 - 563. 10.16984/saufenbilder.270275
MLA Tanış Emine 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.21, no.3, 2017, ss.545 - 563. 10.16984/saufenbilder.270275
AMA Tanış E 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017; 21(3): 545 - 563. 10.16984/saufenbilder.270275
Vancouver Tanış E 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017; 21(3): 545 - 563. 10.16984/saufenbilder.270275
IEEE Tanış E "2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, ss.545 - 563, 2017. 10.16984/saufenbilder.270275
ISNAD Tanış, Emine. "2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (2017), 545-563. https://doi.org/10.16984/saufenbilder.270275