Yıl: 2018 Cilt: 18 Sayı: 1 Sayfa Aralığı: 190 - 200 Metin Dili: Türkçe DOI: 10.5578/fmbd.66681 İndeks Tarihi: 04-03-2019

Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi

Öz:
Bu araştırmada 0.1 ile 10 THz aralığında mikrodalga ve kızılötesi arasında uzanan, elektromanyetik spektrumda çıplak gözle görülemeyen Terahertz (THz) frekanslarının farklı ortamlarda nasıl davrandığı incelenmiştir. Makalenin birinci ve ikinci bölümünde, yüksek hızda kablosuz iletişim için, artan talebi karşılamaya yönelik önemli bir teknoloji olarak öngörülmekte olan Terahertz teknolojisi ve uygulamaları hakkında bilgi verilmiştir. Bu araştırma aynı zamanda hava ve doğal gaz ortamları için hesaplanmış kanal modellenmesi sonucu ortaya çıkan yol kaybı ve emilim kaybı hesaplamalarını göstermektedir. Teorik analiz ve benzetim sonuçları, hava ve doğalgazın THz Bant kısa menzilli kablosuz iletişim kurabileceğini göstermiş ve bu alanda birçok önemli yönlerini vurgulamıştır. Son olarak hava ve doğal gaz ortamı için en ideal performansı sağlayan geçiş pencereleri elde edilmiş ve bu bu geçiş pencereleri makaledeki grafiklerde gösterilmiştir.
Anahtar Kelime:

Konular: Bilgisayar Bilimleri, Sibernitik

Terahertz Technology Applications and Electromagnetic Modelling of Terahertz Waves for Wireless Communication

Öz:
This paper investigates the behavior of different medium of Terahertz frequencies in the electromagnetic spectrum which is invisible to the naked eye, lying between microwave and infrared in the range from 0.1 to 10 THz. First and second part of the paper gives the information of THz communications which have recently gained greater interest and expectation to meet an ever increasing demand for the speed of wireless communications. This paper also shows the calculating of path loss and attenuation loss data in air and natural gas environment which is resulting in channel modeling. The theoretical analysis and the simulation results prove the feasibility of short range wireless communication in the THz Band in air and natural gas and highlight several important aspects in this field. Finally the frequency window, which provides best performance, has been determined for air and natural gas environment and these frequency windows has been showed in the graphics of the paper.
Anahtar Kelime:

Konular: Bilgisayar Bilimleri, Sibernitik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akkaş, Mustafa Alper, 2017, Channel Modeling of Wireless Sensor Networks in Oil, Wireless Personal Communications, 1-10. DOI: 10.1007/s11277-017-40839, ISSN: 0929-6212 (Print) 1572-834X (Online)
  • Akkaş, Mustafa Alper, 2017, Terahertz Wireless Data Communication, Wireless Networks, https://doi.org/10.1007/s11276-017-1548-
  • Atakan B, Ozgur BA., 2007 An information theoretical approach for molecular communication. Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd. IEEE.
  • Blalock JE., 1989. A molecular basis for bidirectional communication between the immune and neuroendocrine systems.Physiological reviews 69.1, 132.
  • Borghino D.,(March 31, 2015). 3D flash technology moves forward with 10 TB SSDs and the first 48-layer memory cells. Gizmag. Retrieved March 2015
  • Burke PJ., 2004. Carbon nanotube devices for GHz to THz applications. Optics East. International Society for Optics and Photonics.
  • Colthup N., 2012, Introduction to infrared and Raman spectroscopy. Elsevier.
  • Dıxon RA, LAMB CJ., 1990 Molecular communication in interactions between plants and microbial pathogens. Annual review of plant biology, 41.1, 339-367.
  • E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C.P. Hauri, P. Zolliker, 2016, Comparison of thermal detector arrays for Off-Axis THz holography and real-time THz imaging, Sensors, 16, p. 221
  • Feynman RP. , 1992. There's plenty of room at the bottom [data storage]. Microelectromechanical Systems, Journal of 1.1, 60-66.
  • Friis HT., 1946 A note on a simple transmission formula. Proceedings of the IRE 34.5, 254-256.
  • Grbovic D, Karunasiri G. , 2009.Fabrication of Bi-material MEMS detector arrays for THz imaging. SPIE Defense, Security, and Sensing. International Society for Optics and Photonics.
  • Hiyama S, Moritani Y, Suda T, Egashira R, Enomoto A, Moore M, Nakano TZ , 2006. Molecular communication. Journal-Institute of Electronics Information and Communication Engineers, 89.2, 162.
  • J.S. Wilzewski, I.E. Gordon, R.V. Kochanov, C. Hill, L.S. Ro thman, 2016, H2, He, and CO2 line-broadening coefficients, pressure shifts and temperaturedependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2, J Quant Spectrosc Radiat Transf, 168, pp. 193206, 10.1016/j.jqsrt.2015.09.003
  • Jepsen PU, David GC, Martin K. , 2011. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser & Photonics Reviews 5.1, 124-166.
  • Jornet JM, Ian FA., 2013. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. Selected Areas in Communications, IEEE Journal on 31.12 , 685-694.
  • Kuran HS, Moritani Y., 2010 Molecular communication: Harnessing biochemical materials to engineer biomimetic communication system, Nano Communication Networks (Elsevier), 1 (2) 20–30.
  • Liu HB, Zhong H, Karpowicz N, Chen Y, Zhang XC., 2007 Terahertz spectroscopy and imaging for defense and security applications . Proceedings of the IEEE 95.8, 15141527
  • Llatser I, Kremers C, Cabellos-Aparicio A, Jornet JM, Alarcón E, Chigrin DN., 2012. Graphene-based nanopatch antenna for terahertz radiation. Photonics and Nanostructures-Fundamentals and Applications 10.4, 353-358.
  • Luukanen A, Hadfield RH, Miller A J, Grossman EN., 2004. A superconducting antenna-coupled microbolometer for THz applications. Defense and Security. International Society for Optics and Photonics.
  • Mittleman DM, Gupta M, Neelamani R, Baraniuk RG, Rudd JV, Koch M., 1999. Recent advances in terahertz imaging. Applied Physics B 68.6, 1085-1094.
  • Naumann D, Dieter H, Harald L., 1991 Microbiological characterizations by FT-IR spectroscopy. Nature 351.6321,81-82.
  • Nazli H, Bicak E, Türetken B, Sezgin M., 2010 An improved design of planar elliptical dipole antenna for UWB applications. Antennas and Wireless Propagation Letters, IEEE 9, 264-267.
  • Pawar AY, Sonawane DD, Erande KB, Derle DV., 2013. Terahertz technology and its applications . Drug Invention Today 5.2, 157-163.
  • Shilov A., 2008. Samsung Unveils 2GB Flash Memory Chip. X-bit labs..
  • T. Nagatsuma, G. Ducournau, and C. C. Renaud, 2016, Advances in terahertz communications accelerated by photonics, Nat. Photonics 10(6), 371–379 .
  • Wang CX, Haider F, Gao X, You XH, Yang Y, Yuan D, Hepsaydir E., 2014, Cellular architecture and key technologies for 5G wireless communication networks. Communications Magazine, IEEE 52.2, 122-130.
APA Akkaş M (2018). Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. , 190 - 200. 10.5578/fmbd.66681
Chicago Akkaş Mustafa Alper Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. (2018): 190 - 200. 10.5578/fmbd.66681
MLA Akkaş Mustafa Alper Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. , 2018, ss.190 - 200. 10.5578/fmbd.66681
AMA Akkaş M Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. . 2018; 190 - 200. 10.5578/fmbd.66681
Vancouver Akkaş M Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. . 2018; 190 - 200. 10.5578/fmbd.66681
IEEE Akkaş M "Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi." , ss.190 - 200, 2018. 10.5578/fmbd.66681
ISNAD Akkaş, Mustafa Alper. "Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi". (2018), 190-200. https://doi.org/10.5578/fmbd.66681
APA Akkaş M (2018). Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(1), 190 - 200. 10.5578/fmbd.66681
Chicago Akkaş Mustafa Alper Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 18, no.1 (2018): 190 - 200. 10.5578/fmbd.66681
MLA Akkaş Mustafa Alper Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol.18, no.1, 2018, ss.190 - 200. 10.5578/fmbd.66681
AMA Akkaş M Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2018; 18(1): 190 - 200. 10.5578/fmbd.66681
Vancouver Akkaş M Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2018; 18(1): 190 - 200. 10.5578/fmbd.66681
IEEE Akkaş M "Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi." Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18, ss.190 - 200, 2018. 10.5578/fmbd.66681
ISNAD Akkaş, Mustafa Alper. "Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 18/1 (2018), 190-200. https://doi.org/10.5578/fmbd.66681