Yıl: 2018 Cilt: 18 Sayı: 2 Sayfa Aralığı: 640 - 647 Metin Dili: Türkçe DOI: 10.5578/fmbd.67348 İndeks Tarihi: 02-08-2019

İletken Polimer Esaslı Nanojeneratörler

Öz:
Gerek doğada, gerekse şehir hayatında mekanik enerjiye di ğer enerji türl eri ne kıya s l a da ha kol a yul a şılabilmektedir. Suyun yüksek debi de a ktığı bi r a ka rs u ya ta ğı, rüzgâ rın s a l l a dığı a ğa ç da l l a rı,üzeri nden araçların geçtiği bir köprü, yürüyen bir i nsanın eklem hareketleri ve zemine p eriyodik olarakuygul adığı basınç aslında birer a tık mekanik enerji kaynağıdırlar. Rüzgar enerjis i , hi drol i k enerji gi bibüyük mi ktarlarda mekanik enerji sağlana bi l en mecra l a rda uzun yıl l a rdır enerji dönüşüm i şl emiendüstriyel olarak gerçekleştirilmektedir. Son yıllarda daha küçük miktarlarda atık enerjinin dönüşümüve kul l a nıma s unul ma s ı i çi n na nojenera törl er üzeri ne a ra ştırma l a r yoğunl a şmıştır.
Anahtar Kelime:

Conducting Polymer Based Nanogenerators

Öz:
Mecha nical energy is more easily a ccessible i n na ture, a nd i n ci ty l i fe tha n other energy types . The wa ter i s a s tream of high activity, tree branches that the wi nd s way, a bridge over which vehicles pa s s , joi nt movement of a human a nd the pressure applied to the fl oor periodi ca l l y i s a ctua l l y a s ource of wa s te mechanical energy. For many yea rs, energy conversion process has been industrially ca rri ed out i n a l arge amount of mechanical energy s uch as wind energy, hydraulic energy. In recent years, research ha s focused on nano-generators to conversion and utilization of waste energy i n s ma l l er qua nti ti es .
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abdolhasani, M.M., Shirvanimoghaddam, K. and Naebe, M., 2016. PVDF/Graphene composite nano- fibers with enhanced piezoelectric performance for development of robust nanogenerators . Composites Science and Technology.
  • Abraham, K.M. and Jiang, Z., 1996. A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery. Journal of Electrochemistry Society, 143.
  • Baeriswyl, D., Campell, D.K. and Mazumdar, S., 1992. Conjugated Conducting Polymers, Hans -Joachim Queisser(Editor), Springer,9-12, 109.
  • Cui, S., Zheng, Y., Liang, J. and Wang, D., 2016. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci., 2016, 7, 6477–6483.
  • Cochrane, C., Kim, B. and Koncar, V., 2006. Intelligent Textiles and Clothing, Mattila, H., Woodhead Publishing, 326-339.
  • Davies, D. K.; 1969. Charge generation on dielectric surfaces. British journal of Applied Physics, Ser. 2, Vol. 2.
  • Ganesh, R.S., Sharma, S.K., Abinnas, N., Durgadevi, E., Raji, P., Ponnusamy, S., Muthamizchelvan, C., Hayakawa, Y. and Kim, D.Y., 2017. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol -gel method. Materials Chemistry and Physics, 192,274-281.
  • Gao, P.X., Song, J. and Wang, Z.L., 2007. Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices . Advanced Materials, 19, 67-72.
  • Gu, L., Cui, N., Cheng, L., Xu, Q., Bai, S., yuan, M., Wu, W., Liu, J., Zhao, Y., Ma, F., Qin, Y. and Wang, Z.L., 2013. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Letters, 13, 91-94.
  • Henry, P. S. H., 1953. The role of asymmetric rubbing in the generation of static electricity. British Journal of Applied Physics.
  • Hu, C.J., Lin, Y.H., Tang, C.W., Tsai, M.Y., Hsu, W.K. and Kuo, H.F., 2011. ZnO-coated carbon nanotubes: flexible piezoelectric generators. Advanced Materials, 23, 2941-2945.
  • Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q. and Zhu, M., 2015. Human walking-driven wearable all - fiber triboelectric nanogenerator containing electrospun polyvinylidenefluoride piezoelectric nano- fibers. Nano Energy, 14, 226-235.
  • Jonas, F. and Heywang, G., 1994. Technical applications for conductive polymers. Electrochimica Acta, 39, 1345-1347.
  • Kim, J., Lee, J.H., Lee, J., Yamauchi, Y., Choi, C.H. and Kim, J.H., 2017. Hybrid energy devices combining nanogenerators and energy storage systems for self charging capability. Applied Materials, 5.
  • Ko, E.J., Lee, E.J., Choi, M.H., Sung, T.H. and Moon, D.K., 2017. PVDF based flexible piezoelectric nanogenerators using conjugated polymer: PCBM blend systems. Sensors and Actuators A: Physical, 259, 112-120.
  • Koerner, H., Liu, W., Alexander, M., Mirau, P., Dowty, H. and Vaia, R.A., 2005. Deformation–morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer, 46, 4405-4420.
  • Kumar, D. and Sharma, R.C., 1998. Advances in conductive polymers. Europan Polymer Journal, 34, 1053-1060.
  • Lee, K.Y., Kumar, B., Seo, J.S., Kim, K.H., Sohn, J.I., Cha, S.N., Choi, D., Wang, Z.L. and Kim, S.W., 2012. P-Type Polymer-Hybridized High Performance Piezoelectric Nanogenerators. Nano Letters, 12, 1959-1964.
  • Leng, Q., Chen, L., Guo, H., Liu, J., Hu, C. and Xi, Y., 2014. Harvesting heat energy from hot/cold water with a pyroelectric generator. Journal of Materials Chemistry, 2, 11940-11947.
  • Ling, B.K., Li, T., Hng, H.H., Boey, F., Zhang, T., and Li, S., 2014. Waste Energy Harvesting: Mechanical and Thermal Energies. 24, Springer. 15-27.
  • Lu, X., Qu, H. and Skorobogatiy, M., 2017. Piezoelectric Micro-and Nano-structured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ACS Nano.
  • MacDiarmic, A.G., 2001. “Synthetic Metals”: A novel role for organic polymers(Nobel Lecture). Angewandte Chemie International Edition, 40, 2581-2590.
  • Meyer, W.H., 1998. Polymer electrolytes for lithium- ion batteries. Advanced Materials, 10.
  • Martin, C.R., 1995. Template synthesis of electronically conductive polymer nanostructures. Account of Chemical Researches, 28, No:2.
  • Noda, A. and Watanabe, M., 2000. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 45, 1265-1270.
  • Pu, X., Li, L., Liu, M., Jiang, C., Du, C., Zhao, Z., Hu, W. and Wang, Z.L., 2015. Wearable Self-Charging Power Textile Based on FlexibleYarn Supercapacitors and Fabric Nanogenerators. Advanced Materials, 28, 98- 105.
  • Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V. and Siores, E., 2014. Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy and Environmental Science, 7, 1670-1679.
  • Shukla, S.K., Singh, N.B. and Rastogi, R.P., 2013. Efficient ammonia sensing over zinc oxide/polyaniline nanocomposite. Indian Journal of Engineering & Materials Sciences, 20, 319-324.
  • Wang, J., Wen, Z., Zi, Y., Zhou, P., Lin, J., Guo, H., Xu, Y. and Wang, Z.L., 2016. All-Plastic-Materials Based Self Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors . Advanced Functional Materials, 26, 1070-1076.
  • Wang, Z.L. and Song, J., 2006. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242-245.
  • Wang, Z.L., 2007. Nanopiezotronics. Materials, 19, 889-892. Advanced
  • Wang, Z.L., 2014. Triboelectric nanogenerators as new energy technology and self-powered sensors– Principles, problems and perspectives . Faraday Discussions.
  • Xu, G.Q., Lv, J., Zheng, Z.X. and Wu, Y.C., 2012. Polypyrrole(PPy) nanowire arrays entrapped with glucose oxidase biosensor for glucose detection. NEMS 2012(Conference Paper).
  • Yu, H., Huang, T., Lu, M., Mao, M, Zhang, Q. and Wang, H., 2013. .; Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, 24.
APA Ünsal Ö, BEDELOĞLU A (2018). İletken Polimer Esaslı Nanojeneratörler. , 640 - 647. 10.5578/fmbd.67348
Chicago Ünsal Ömer Faruk,BEDELOĞLU Ayşe ÇELİK İletken Polimer Esaslı Nanojeneratörler. (2018): 640 - 647. 10.5578/fmbd.67348
MLA Ünsal Ömer Faruk,BEDELOĞLU Ayşe ÇELİK İletken Polimer Esaslı Nanojeneratörler. , 2018, ss.640 - 647. 10.5578/fmbd.67348
AMA Ünsal Ö,BEDELOĞLU A İletken Polimer Esaslı Nanojeneratörler. . 2018; 640 - 647. 10.5578/fmbd.67348
Vancouver Ünsal Ö,BEDELOĞLU A İletken Polimer Esaslı Nanojeneratörler. . 2018; 640 - 647. 10.5578/fmbd.67348
IEEE Ünsal Ö,BEDELOĞLU A "İletken Polimer Esaslı Nanojeneratörler." , ss.640 - 647, 2018. 10.5578/fmbd.67348
ISNAD Ünsal, Ömer Faruk - BEDELOĞLU, Ayşe ÇELİK. "İletken Polimer Esaslı Nanojeneratörler". (2018), 640-647. https://doi.org/10.5578/fmbd.67348
APA Ünsal Ö, BEDELOĞLU A (2018). İletken Polimer Esaslı Nanojeneratörler. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(2), 640 - 647. 10.5578/fmbd.67348
Chicago Ünsal Ömer Faruk,BEDELOĞLU Ayşe ÇELİK İletken Polimer Esaslı Nanojeneratörler. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 18, no.2 (2018): 640 - 647. 10.5578/fmbd.67348
MLA Ünsal Ömer Faruk,BEDELOĞLU Ayşe ÇELİK İletken Polimer Esaslı Nanojeneratörler. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol.18, no.2, 2018, ss.640 - 647. 10.5578/fmbd.67348
AMA Ünsal Ö,BEDELOĞLU A İletken Polimer Esaslı Nanojeneratörler. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2018; 18(2): 640 - 647. 10.5578/fmbd.67348
Vancouver Ünsal Ö,BEDELOĞLU A İletken Polimer Esaslı Nanojeneratörler. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2018; 18(2): 640 - 647. 10.5578/fmbd.67348
IEEE Ünsal Ö,BEDELOĞLU A "İletken Polimer Esaslı Nanojeneratörler." Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18, ss.640 - 647, 2018. 10.5578/fmbd.67348
ISNAD Ünsal, Ömer Faruk - BEDELOĞLU, Ayşe ÇELİK. "İletken Polimer Esaslı Nanojeneratörler". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 18/2 (2018), 640-647. https://doi.org/10.5578/fmbd.67348