Yıl: 2018 Cilt: 19 Sayı: 4 Sayfa Aralığı: 336 - 344 Metin Dili: İngilizce DOI: 10.4274/meandros.96168 İndeks Tarihi: 06-09-2019

The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals

Öz:
Objective: Electroencephalogram (EEG) signals have been broadly utilized for the diagnosis of epilepsy. Expert physicians must monitor long-term EEG signals that is sometimes difficult and time consuming process for epilepsy diagnosis. In this study, classification performances of support vector machine (SVM) and linear discriminant analysis (LDA), which are widely used in computer supported epilepsy diagnosis, were compared by using wavelet-based features of extracted from EEG signals which were derived in either normal or inter-ictal periods. In addition, principal component analysis (PCA) and independent component analysis (ICA) were used to determine the effects of dimension reduction on classification success. Materials and Methods: The EEG data were sampled from the EEG laboratory of the Department of Neurology and Clinical Neurophysiology in Adnan Menderes University. Study was approved by Local Ethics Committee with protocol number 2016/873. Ten patients with epilepsy and 10 normal were the study group. EEG signals of patients with epilepsy were contains only seizure free- epochs. EEG signals were first decomposed into frequency sub-bands by using discrete wavelet transform (DWT) and then some statistical features were calculated from those to classify it's as normal or epileptic. Results: In classification of the EEG signals, it's as normal or epileptic, we achieved 88.9% accuracy rate using SVM with radial basis function (RBF) kernel without dimension reduction. Conclusion: Results showed that SVM was a powerful tool in classifying EEG signals if it's normal or epileptic.
Anahtar Kelime:

Konular: Tıbbi Araştırmalar Deneysel Genel ve Dahili Tıp Diş Hekimliği Cerrahi

Elektroensefalografi Sinyallerinde Farklı Boyut Indirgeme ve Sınıflandırma Yöntemlerinin Karşılaştırılması

Öz:
Amaç: Bu çalışmada, epileptik ve epileptik olmayan elektroensefalografi (EEG) sinyallerinden elde edilen özniteliklerin boyutlarının temel bileşenler analizi ve bağımsız bileşenler analizi yöntemleri ile indirgenmesinin sınıflandırma başarısı üzerine etkilerinin belirlenmesi ve doğrusal ayırma analizi ile destek vektör makinesi (DVM) yöntemlerinin sınıflandırma performanslarının karşılaştırılması amaçlanmıştır. Gereç ve Yöntemler: Çalışmaya 10 kontrol ve uzman hekim tarafından epilepsi tanısı konmuş 10 hasta olmak üzere toplam 20 kişi dahil edildi. Epilepsi tanısı konmuş hastalardan alınan EEG kayıtları nöbet geçirmedikleri sırada alınan kayıtlardı. Epileptik ve epileptik olmayan sinyalleri sınıflandırmak için ayrık dalgacık dönüşümü ile sinyallerinin spektral analizi gerçekleştirildi ve sınıflandırmada kullanılacak olan öznitelikler elde edildi. Öncelikle özniteliklerin boyutu indirgenmeden, daha sonra temel bileşenler analizi ve bağımsız bileşenler analizi ile indirgenerek sınıflandırma yapıldı. Sınıflandırma doğrusal diskriminant analizi, lineer ve radyal tabanlı çekirdek fonksiyonlarının kullanıldığı DVM yöntemleri ile gerçekleştirildi. Bulgular: EEG sinyallerinin epileptik ya da normal olarak sınıflandırılmasında radyal tabanlı çekirdek fonksiyonunun kullanıldığı DVM ile %88,9 doğruluk oranı elde edildi. Sonuç: DVM yönteminin, epileptik ve normal sinyalleri ayırt etmede kullanılabilecek güçlü bir yöntem olduğu sonucuna varıldı.
Anahtar Kelime:

Konular: Tıbbi Araştırmalar Deneysel Genel ve Dahili Tıp Diş Hekimliği Cerrahi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG: Oxford University Press, USA; 2006.
  • Ropper AH. Adams and Victor's principles of neurology: McGrawHill Medical Pub. Division New York; 2005.
  • Sanei S, Chambers J. EEG Signal processing, 2007. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England; 2007.
  • Nuh M, Jazidie A, Muslim M, editors. Automatic detection of epileptic spikes based on wavelet neural network. Circuits and Systems, 2002 APCCAS'02 2002 Asia-Pacific Conference on; 2002: IEEE.
  • Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: a review. Knowledge-Based Systems 2013; 45: 147-65.
  • Amorim P, Moraes T, Fazanaro D, Silva J, Pedrini H. Electroencephalogram signal classification based on shearlet and contourlet transforms. Expert Syst Appl 2017; 67: 140-7.
  • Bao FS, Lie DY-C, Zhang Y, editors. A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. Tools with Artificial Intelligence, 2008 ICTAI'08 20th IEEE International Conference on; 2008: IEEE.
  • . Bronzino JD. Biomedical engineering handbook: CRC press; 1999.
  • Das AB, Bhuiyan MIH, Alam SS. Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal Image and Video Processing 2016; 10: 259-66.
  • Fu K, Qu J, Chai Y, Zou T. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control 2015; 18: 179-85.
  • Kumar Y, Dewal M, Anand R. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image and Video Processing 2014; 8: 1323-34.
  • Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications. 2015; 42: 1106-17.
  • Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 2010; 37: 865966.
  • Alam SM, Bhuiyan MI. Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Health Inform 2013; 17: 312-8.
  • Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 2015; 38: 139-49.
  • Iscan Z, Dokur Z, Demiralp T. Classification of electroencephalogram signals with combined time and frequency features. Expert Systems with Applications 2011; 38: 10499-505.
  • . Lima CA, Coelho AL, Eisencraft M. Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study. Comput Biol Med 2010; 40: 705-14.
  • Srinivasan V, Eswaran C, Sriraam N. Artificial neural network based epileptic detection using time-domain and frequencydomain features. J Med Syst 2005; 29: 647-60.
  • Supriya S, Siuly S, Zhang Y. Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network. Electronics Letters 2016; 52: 1430-2.
  • Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inf Technol Biomed 2009; 13: 703-10.
  • Zhang T, Chen W. LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 2017; 25: 1100-8.
  • . Steinbuch M, van de Molengraft M. Wavelet theory and applications: a literature study. Eindhoven: Eindhoven University Technology Department of Mechanical Engineering Control System Group. 2005.
  • Kovacevic MVJ. Wavelets and subband coding. 1995.
  • Rioul O, Vetterli M. Wavelets and signal processing. IEEE signal processing magazine 1991; 8: 14-38.
  • Misiti M, Misiti Y, Oppenheim G, Poggi J-M. Matlab Wavelet Toolbox User's Guide. Version 3. 2004.
  • Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015; 26: 56-64.
  • Li M, Chen W, Zhang T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control 2017; 31: 357-65.
  • Meier R, Dittrich H, Schulze-Bonhage A, Aertsen A. Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J Clin Neurophysiol 2008; 25: 119-31.
  • Dunteman GH. Principal component analysis (Quantitative applications in the social sciences). SAGE Publications, Thousand Oaks; 1989.
  • Jolliffe I. Principal component analysis: Wiley Online Library. 2005.
  • Acharya UR, Sree SV, Alvin APC, Suri JS. Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 2012; 39: 9072-8.
  • Ghosh-Dastidar S, Adeli H, Dadmehr N. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng 2008; 55: 512-8.
  • Hyvärinen A, Karhunen J, Oja E. Independent Component Analysis, 500 John Wiley & Sons. NJ, USA. 2001;501.
  • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999; 10: 626-34.
  • . Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20: 273-97.
  • Ben-Hur A, Weston J. A user’s guide to support vector machines. Methods Mol Biol 2010; 609: 223-39.
  • Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998; 2: 121-67.
  • Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 2001; 64: 061907.
  • Xie S, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med Biol Eng Comput 2013; 51: 49-60.
  • Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 2011; 38: 13475-81.
  • Subasi A, Ercelebi E. Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed 2005; 78: 87-99.
  • Garrett D, Peterson DA, Anderson CW, Thaut MH. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. EEE Trans Neural Syst Rehabil Eng 2003; 11: 141-4.
  • Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund L-O, et al. Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). J Neurosci Methods 2007; 161: 342-50.
APA Ozturk H, TÜRE M, KIYLIOĞLU N, KURT ÖMÜRLÜ İ (2018). The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. , 336 - 344. 10.4274/meandros.96168
Chicago Ozturk Hakan,TÜRE Mevlüt,KIYLIOĞLU Nefati,KURT ÖMÜRLÜ İMRAN The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. (2018): 336 - 344. 10.4274/meandros.96168
MLA Ozturk Hakan,TÜRE Mevlüt,KIYLIOĞLU Nefati,KURT ÖMÜRLÜ İMRAN The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. , 2018, ss.336 - 344. 10.4274/meandros.96168
AMA Ozturk H,TÜRE M,KIYLIOĞLU N,KURT ÖMÜRLÜ İ The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. . 2018; 336 - 344. 10.4274/meandros.96168
Vancouver Ozturk H,TÜRE M,KIYLIOĞLU N,KURT ÖMÜRLÜ İ The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. . 2018; 336 - 344. 10.4274/meandros.96168
IEEE Ozturk H,TÜRE M,KIYLIOĞLU N,KURT ÖMÜRLÜ İ "The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals." , ss.336 - 344, 2018. 10.4274/meandros.96168
ISNAD Ozturk, Hakan vd. "The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals". (2018), 336-344. https://doi.org/10.4274/meandros.96168
APA Ozturk H, TÜRE M, KIYLIOĞLU N, KURT ÖMÜRLÜ İ (2018). The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. Meandros Medical And Dental Journal, 19(4), 336 - 344. 10.4274/meandros.96168
Chicago Ozturk Hakan,TÜRE Mevlüt,KIYLIOĞLU Nefati,KURT ÖMÜRLÜ İMRAN The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. Meandros Medical And Dental Journal 19, no.4 (2018): 336 - 344. 10.4274/meandros.96168
MLA Ozturk Hakan,TÜRE Mevlüt,KIYLIOĞLU Nefati,KURT ÖMÜRLÜ İMRAN The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. Meandros Medical And Dental Journal, vol.19, no.4, 2018, ss.336 - 344. 10.4274/meandros.96168
AMA Ozturk H,TÜRE M,KIYLIOĞLU N,KURT ÖMÜRLÜ İ The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. Meandros Medical And Dental Journal. 2018; 19(4): 336 - 344. 10.4274/meandros.96168
Vancouver Ozturk H,TÜRE M,KIYLIOĞLU N,KURT ÖMÜRLÜ İ The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals. Meandros Medical And Dental Journal. 2018; 19(4): 336 - 344. 10.4274/meandros.96168
IEEE Ozturk H,TÜRE M,KIYLIOĞLU N,KURT ÖMÜRLÜ İ "The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals." Meandros Medical And Dental Journal, 19, ss.336 - 344, 2018. 10.4274/meandros.96168
ISNAD Ozturk, Hakan vd. "The Comparison of Different Dimension Reduction and Classification Methods in Electroencephalogram Signals". Meandros Medical And Dental Journal 19/4 (2018), 336-344. https://doi.org/10.4274/meandros.96168