TURGUT ÖZSEVEN
(Tokat Gaziosmanpaşa University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Tokat, Turkey)
Yıl: 2018Cilt: 0Sayı: 14ISSN: 2148-2683 / 2148-2683Sayfa Aralığı: 241 - 244İngilizce

131 0
Investigation of the Relation between Emotional State and Acoustic Parameters in the Context of Language
Acoustic analysis is the most basic method used for speech emotion recognition. Speech records are digitized by signal processing methods, and various acoustic features of speech are obtained by acoustic analysis methods. The relationship between acoustic features and emotion has been investigated in many studies. However, studies have mostly focused on emotion recognition success or the effects of emotions on acoustic features. The effect of spoken language on speech emotion recognition has been investigated in a limited number. The purpose of this study is to investigate the variability of the relationship between acoustic features and emotions according to the spoken language. For this purpose, three emotions (anger, fear and neutral) of three different spoken languages (English, German and Italian) were used. In these data sets, the change in acoustic features according to spoken language was investigated statistically. According to the results obtained, the effect of anger on the acoustic features does not change according to the spoken language. For fear, change in spoken language shows a high similarity in Italian and German, but low similarity in English.
Fen > Temel Bilimler > Astronomi ve Astrofizik
Fen > Temel Bilimler > Biyoloji
Fen > Temel Bilimler > Kimya, Analitik
Fen > Temel Bilimler > Kimya, Uygulamalı
Fen > Temel Bilimler > Kimya, İnorganik ve Nükleer
Fen > Temel Bilimler > Kimya, Tıbbi
Fen > Temel Bilimler > Kimya, Organik
Fen > Temel Bilimler > Fizikokimya
Fen > Temel Bilimler > Çevre Bilimleri
Fen > Temel Bilimler > Genetik ve Kalıtım
Fen > Temel Bilimler > Matematik
Fen > Temel Bilimler > Mantar Bilimi
Fen > Temel Bilimler > Optik
Fen > Temel Bilimler > Paleontoloji
Fen > Temel Bilimler > Fizik, Uygulamalı
Fen > Temel Bilimler > Fizik, Atomik ve Moleküler Kimya
Fen > Temel Bilimler > Fizik, Katı Hal
Fen > Temel Bilimler > Fizik, Akışkanlar ve Plazma
Fen > Temel Bilimler > Fizik, Matematik
Fen > Temel Bilimler > Fizik, Nükleer
Fen > Temel Bilimler > Fizik, Partiküller ve Alanlar
Fen > Temel Bilimler > Viroloji
Fen > Temel Bilimler > Su Kaynakları
DergiAraştırma MakalesiErişime Açık
  • B. Zupan, D. Neumann, D. R. Babbage, and B. Willer, ‘The importance of vocal affect to bimodal processing of emotion: implications for individuals with traumatic brain injury’, J. Commun. Disord., vol. 42, no. 1, pp. 1–17, 2009.
  • F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, ‘A database of German emotional speech.’, in Interspeech, 2005, vol. 5, pp. 1517–1520.
  • G. Costantini, I. Iaderola, A. Paoloni, and M. Todisco, ‘EMOVO Corpus: an Italian Emotional Speech Database.’, in LREC, 2014, pp. 3501–3504.
  • P. Jackson, S. Haq, and J. D. Edge, ‘Audio-Visual Feature Selection and Reduction for Emotion Classification’, in In Proc. Int’l Conf. on Auditory-Visual Speech Processing, 2008, pp. 185–190.
  • J. H. Hansen, S. E. Bou-Ghazale, R. Sarikaya, and B. Pellom, ‘Getting started with SUSAS: a speech under simulated and actual stress database.’, in Eurospeech, 1997, vol. 97, pp. 1743–46.
  • P. Boersma and D. Weenink, Praat: doing phonetics by computer [Computer program], Version 5.1. 44. 2010.
  • F. Eyben, M. Wöllmer, and B. Schuller, ‘Opensmile: the munich versatile and fast open-source audio feature extractor’, in Proceedings of the international conference on Multimedia, 2010, pp. 1459–1462.
  • W. Tarng, Y.-Y. Chen, C.-L. Li, K.-R. Hsie, and M. Chen, ‘Applications of support vector machines on smart phone systems for emotional speech recognition’, World Acad. Sci. Eng. Technol., vol. 72, pp. 106–113, 2010.
  • M. C. Sezgin, B. Gunsel, and G. K. Kurt, ‘Perceptual audio features for emotion detection’, EURASIP J. Audio Speech Music Process., vol. 2012, no. 1, pp. 1–21, 2012.
  • M. Grimm, K. Kroschel, E. Mower, and S. Narayanan, ‘Primitives-based evaluation and estimation of emotions in speech’, Speech Commun., vol. 49, no. 10–11, pp. 787–800, Oct. 2007.
  • D. D. Joshi and M. B. Zalte, Recognition of Emotion from Marathi Speech Using MFCC and DWT Algorithms. IJACECT, 2013.
  • S. Sarıca, ‘Ses Analizinde Kullanılan Akustik Parametreler’, Tıpta Uzmanlık Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Tıp Fakültesi, Kahramanmaraş, 2012.
  • K. M. Okur E., ‘CSL ve Dr. Speech ile ölçülen temel frekans ve pertürbasyon değerlerinin karşılaştırılması’, KBB Ihtis. Derg., vol. 8, pp. 152–157, 2001.
  • M. Farrus and J. Hernando, ‘Using jitter and shimmer in speaker verification’, Signal Process. IET, vol. 3, no. 4, pp. 247–257, 2009.
  • O. Deshmukh, C. Y. Espy-Wilson, A. Salomon, and J. Singh, ‘Use of temporal information: Detection of periodicity, aperiodicity, and pitch in speech’, Speech Audio Process. IEEE Trans. On, vol. 13, no. 5, pp. 776–786, 2005.
  • Y. Karagöz, ‘Nonparametrik tekniklerin güç ve etkinlikleri’, Elektron. Sos. Bilim. Derg., vol. 9, no. 33, pp. 18–40, 2010.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.