Yıl: 2018 Cilt: 28 Sayı: 3 Sayfa Aralığı: 264 - 272 Metin Dili: Türkçe İndeks Tarihi: 08-07-2019

Nanoteknoloji ve Nanonöroşirürji

Öz:
Nanoteknoloji atomların farklı dizilişleriyle; üretim tekniklerinde yenilik yapmak ve ihtiyaca uygun üstün özellikli yeni ürünlergeliştirmektir. Nanonöroşirürji ise nanoteknoloji ile kombine hücresel ve moleküler biyoloji kullanılarak, merkezi ve periferik sinirsisteminin, hücre ve mikrohücre düzeyinde nano ölçekli manipülasyonu olarak tanımlanır. Nanoteknoloji, mevcut görüntülememodalitelerinin çözünürlüğünün ve duyarlılığının artırılmasında, beyin tümörlerinin tedavi planlamasında, özellikle de glioblastomagibi malign neoplazmlar ile ilgili mevcut yaklaşımın değiştirilmesinde, omurga hastalıklarının tedavisinde yeni yapısal destek veenfeksiyon oranlarının azaltılmasını amaçlayarak gelişmeye devam etmektedir. Ayrıca nöral doku mühendisliği açısından, nanomalzemeler nörorejenerasyon sürecini yönlendirebilecek niteliktedir. Nanoteknoloji, hücresel ve moleküler düzeye müdahaleyikolaylaştırarak nöroşirürjiyi değiştirme gücüne sahiptir. Bu derleme yazısında, gelişmekte olan nanoteknoloji tekniklerinin nöroşirürjiile ilgili potansiyel önemi değerlendirildi.
Anahtar Kelime:

Konular: Nanobilim ve Nanoteknoloji

Nanotechnology and Nanoneurosurgery

Öz:
Nanotechnology is the production of new products with superior features and innovation in production techniques with various arrangements of atoms. Nanoneurosurgery is defined as nano-scale manipulation of the central and peripheral nervous system at the cellular level, using cellular and molecular biology combined with nanotechnology. Nanotechnology is used increasingly to improve the resolution and sensitivity of existing imaging modalities, to plan and change the treatment modalities of brain tumors, especially of malignant neoplasms such as glioblastoma, to provide new structural support in the treatment of spinal diseases, and to reduce infection rates. In terms of neural tissue engineering, nanomaterials are also capable of directing the neuroregeneration process. Nanotechnology has the power to change neurosurgery by facilitating intervention at the cellular and molecular level. In this review, we have evaluated the potential importance of developing nanotechnology techniques for neurosurgery.
Anahtar Kelime:

Konular: Nanobilim ve Nanoteknoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Albrecht KW, de Witt Hamer PC, Leenstra S, Bakker PJ, Beijnen JH, Troost D, Kaaijk P, Bosch AD: High concentration of daunorubicin and daunorubicinol in human malignant astrocytomas after systemic administration of liposomal daunorubicin. J Neuro-Oncol 53: 267–271, 2001
  • Aryal M, Park J, Vykhodtseva N, Zhang YZ, McDannold N: Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: Evaluation during tumor progression in a rat glioma model. Phys Med Biol 60: 2511–2527, 2015
  • Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N: Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood- brain barriers improve outcomes in a rat glioma model. J Control Release 169:103–111, 2013
  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS: Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972, 2005
  • Barker RA, Widner H: Immune problems in central nervous system cell therapy. NeuroRx 1:472–481, 2004
  • Baumann MD, Kang CE, Tator CH, Shoichet MS: Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 31:7631–7639, 2010
  • Beduneau A, Saulnier P, Benoit JP: Active targeting of brain tumors using nanocarriers. Biomaterials 28: 4947–4967, 2007
  • Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL: Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines. J Neuro-Oncol 86: 165–172, 2008
  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM: Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci 106:13594–13599, 2009
  • Bobyk L, Edouard M, Deman P, Vautrin M, Pernet-Gallay K, Delaroche JAdam JF, Estève F, Ravanat JL, Elleaume H: Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine 9:1089–1097, 2013
  • Borlongan CV, Stahl CE, Cameron DF, Saporta S, Freeman TB, Cahill DW, Sanberg PR: CNS immunological modulation of neural graft rejection and survival. Neurol Res 18:297–304, 1996
  • Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, Cipollone S, Prato M, Ballerini L: Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: Novel frontiers in nanomaterial–tissue interactions. J Neurosci 31:12945–12953, 2011
  • Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME: Nogo-A is a myelinassociated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439, 2000
  • Cook KA: Discover Nano. 2005
  • Corot C, Robert P, Idée JM, Port M: Recent advance sinironoxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504, 2006
  • Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA: Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269: 57–66, 2008
  • Dunn IF, Black PM: The neurosurgeon as local oncologist: Cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 52:1411–1422, 2003
  • Esfand R, Tomalia DA: Poly(amidoamine) (PAMAM) dendri- mers: From biomimicry to drug delivery and biomedical applications. Drug Discov Today 6: 427–436, 2001
  • Fabbro A, Prato M, Ballerini L: Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 65:2034– 2044, 2013
  • Fabel K, Dietrich J, Hau P, Wismeth C, Winner B, Przywara S, Steinbrecher A, Ullrich W, Bogdahn U: Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 92: 1936–1942, 2001
  • Fawcett JW, Asher RA: The glial scar and central nervous system repair. Brain Res Bull 49:377-391, 1999
  • Ferrari M: Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 5: 161–171, 2005
  • Fiorillo A, Maggi G, Greco N, Migliorati R, D’Amico A, De Caro MD, Sabbatino MS, Buffardi F: Second-line chemotherapy with the association of liposomal daunorubicin, carboplatin and etoposide in children with recurrent malignant brain tumors. J Neurooncol 66: 179–185, 2004
  • Garbayo E, Estella-Hermoso de Mendoza A, Blanco-Prieto MJ: Diagnostic and therapeuticuses of nanomaterials in thebrain. Curr Med Chem 21:4100–4131, 2014
  • Gardin C, Piattelli A, Zavan B: Graphene in regenerative medicine: Focus on stem cells and neuronal differentiation. Trends Biotechnol 34: 435–437, 2016
  • Geim AK, Novoselov KS: The rise of graphene. Nat Mater 6:183–191, 2007
  • Gheith MK, Sinani VA, Wicksted JP, Matts RL, Kotov NA: Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv Mater 17:2663–2670, 2005
  • Gilbert RJ, McKeon RJ, Darr A, Calabro A, Hascall VC, Bellamkonda RV: CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 29:545–558, 2005
  • Gilmore JL, Yi X, Quan L, Kabanov AV: Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 3:83–94, 2008
  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J: Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16: 1564–1569, 1999
  • Hawkins CJ: TRAIL and malignant glioma. Vitam Horm 67: 427–452, 2004
  • Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G, Gulyas G, Athey P, Scott MJ, Wickline SA, Lanza GM: Imaging of Vx-2 rabbittumors with alpha(nu)beta3-integrin- targeted 111In nanoparticles. Int J Cancer 120:1951–1757, 2007
  • Hu H, Ni Y, Montana V, Haddon RC, Parpura V: Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4:507–511, 2004
  • Hu Q, Gao X, Gu G, Kang T, Tu Y, Liu Z, Song Q, Yao L, Pang Z, Jiang X, Chen H, Chen J: Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel. Biomaterials 34:5640– 5650, 2013
  • Huang RQ, Qu YH, Ke WL Zhu JH, Pei YY, Jiang C: Efficient gene delivery targeted to the brain using a transferrin- conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21: 1117–1125,2007
  • Iyer AK, Khaled G, Fang J. Maeda H: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11: 812–818,2006
  • Jan E, Kotov NA: Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123–1128, 2007
  • Jing H, Weidensteiner C, Reichardt W, Gaedicke S, Zhu X, Grosu AL, Kobayashi H, Niedermann G: Imaging and selective elimination of glioblastoma stem cells with theranostic near- infrared-labeled CD133-specific antibodies. Theranostics 6: 862–874, 2016
  • Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, Jeon JW, Kim MH, Kang BG, Jung Y, Jin J, Hong SC, Park WY, Lee DS, Kim H, Nam DH: Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815, 2008
  • Kateb B, Heiss JD: The Textbook of Nanoneuroscience and Nanoneurosurgery. CRC/Taylor & Francis, 2017
  • Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS: Multicenter phase II trial of genexol-PM, a novel cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small- cell lung cancer. Ann Oncol 18: 2009–2014, 2007
  • Kuroda J, Kuratsu J, Yasunaga M, Koga Y, Saito Y, Matsumura Y: Potent antitumor effect of SN-38-incorporating polymeric micelle, NK012, against malignant glioma. Int J Cancer 124: 2505–2511, 2009
  • Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G: New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 6:1017–1032,2009
  • Lee J-H, Huh YM, Jun YW Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99,2007
  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J: Multicenter phase II trial of genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108: 241–250, 2008
  • Lee W, Parpura V: Carbon nanotubes as substrates/scaffolds for neural cell growth. Prog Brain Res 180:110–125, 2009
  • Lim TC, Rokkappanavar S, Toh WS, Wang LS, Kurisawa M, Spector M: Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF- 1alpha release and compatible structural support. Faseb J 27:1023–1033, 2013
  • Liu L, Venkatraman SS, Yang YY, Guo K, Lu J, He B, Moochhala S, Kan L: Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Biopolymers 90: 617–623, 2008
  • Liu Y, Wu D-C, Zhang W-D, Jiang X, He CB, Chung TS, Goh SH, Leong KW: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem 117:4860–6863, 2005
  • Liu Z, Tabakman S, Welsher K, Dai H: Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120, 2009
  • Lockman PR, Mumper RJ, Khan MA, Allen DD: Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev Ind Pharm 28: 1–13, 2002
  • Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L: Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5:1107–1110, 2005
  • Lu W, Sun Q, Wan J, She Z, Jiang XG: Cationic albumin- conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 66: 11878–11887, 2006
  • Ma J, He Y, Liu X, Chen W, Wang A, Lin CY, Mo X, Ye X: A novel electrospun-aligned nanoyarn/three-dimensional porous nano fibrous hybrid scaffold for annulus fibrosus tissue engineering Int J Nanomedicine 13: 1553–1567, 2018
  • Martino G, Pluchino S: The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406, 2006
  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544, 2005
  • Migliorini E, Grenci G, Ban J. Pozzato A, Tormen M, Lazzarino M, Torre V, Ruaro ME: Acceleration of neuronal precursors differentiation induced by substrate nanotopography. Biotechnol Bioeng 108: 2736–2746, 2011
  • Moon SU, Kim J, Bokara KK, Kim JY, Khang D, Webster TJ, Lee JE: Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine 7:2751–2765, 2012
  • Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T: Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342: 215–221, 2007
  • Nguyen-Vu TDB, Chen H, Cassell AM, Andrews RJ, Meyyappan M, Li J: Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans Biomed Eng 54:1121–1128, 2007
  • Orive G, Anitua E, Pedraz JL, Emerich DF: Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692, 2009
  • Parak WJ, Pellegrino T, Plank C: Labelling of cells with quantum dots. Nanotechnology 16:9-25, 2005
  • Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S: Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23:263–267, 2011
  • Pathak S, Cao E, Davidson MC, Jin S, Silva GA: Quantum dot applica- tions to neuroscience: New tools for probing neurons and glia. J Neurosci 26:1893–1895, 2006
  • Polikov VS, Block ML, Fellous JM, Hong JS, Reichert WM: In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials 27:5368–5376, 2006
  • Qu Y, Wang Z, Zhou H, Kang M, Dong R, Zhao J: Oligosaccharide nanomedicine of alginate sodium improves therapeutic results of posterior lumbar interbody fusion with cages for degenerative lumbardisease in osteoporosis patients by down regulating serum miR-155. Int J Nanomedicine 12:8459-8469, 2017
  • Reibold M, Paufler P, Levin AA, Kochmann W, Pätzke N, Meyer DC: Carbonnanotubes in an ancient Damascus sabre. Nature 286,2006
  • Reier PJ, Houle JD: The glial scar: Its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87–138, 1988
  • Santos T, Fang X, Chen MT, Wang W, Ferreira R, Jhaveri N, Gundersen M, Zhou C, Pagnini P, Hofman FM, Chen TC: Sequential administration of carbon nanotubes and near- infrared radiation for the treatment of gliomas. Front Oncol 4:180, 2014
  • Santos T, Ferreira R, Maia J, et al: Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS Nano 6:10463–10474, 2012
  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN: Molecularly targeted therapy for malignant glioma. Cancer 110: 13–24,2007
  • Silva GA: Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol 63:301–306, 2005
  • Steiniger SC, Kreuter J, Khalansky AS Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE: Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109: 759–767, 2004
  • Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L: Interactions between cultured neurons and carbon nanotubes: A nanoneuroscience vignette. J Nanoneurosci 1:10–16, 2009
  • Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LK, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano 8:76–103, 2014
  • Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP: Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater Weinheim 24:4285–4290, 2012
  • Wolford LM, Stevao ELL: Considerations in nerve repair. Proc (Bayl Univ Med Cent) 16:152–156, 2003
  • Xu R, Ma J, Sun X, Chen Z, Jiang X, Guo Z, Huang L, Li Y, Wang M, Wang C, Liu J, Fan X, Gu J, Chen X, Zhang Y, Gu N: Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res 19:1031–1034, 2009
  • Yiu G, He Z: Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627, 2006
  • Yiu G, He Z: Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr Opin Neurobiol 13:545–551, 2003
  • Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M, Saito R, Nobayashi M, Wakabayashi T: Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther 15:77–86, 2004
  • Zeng X, Han I, Abd-El-Barr M, Aljuboori Z, Anderson JE, Chi JH, Zafonte RD, Teng YD: The effects of thermal preconditioning on oncogenic and intraspinal cord growth features of human glioma cells. Cell Transplant 25: 2099–2109, 2016
  • Zhang L, Webster TJ: Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 4:66– 80, 2009
APA KİRAZ M, ÇEVİK S, DEMIREL A, GERGİN Y, ÖZDEMİR Ö (2018). Nanoteknoloji ve Nanonöroşirürji. , 264 - 272.
Chicago KİRAZ Murat,ÇEVİK SERDAR,DEMIREL Altan,GERGİN Yusuf Emrah,ÖZDEMİR Ömer Nanoteknoloji ve Nanonöroşirürji. (2018): 264 - 272.
MLA KİRAZ Murat,ÇEVİK SERDAR,DEMIREL Altan,GERGİN Yusuf Emrah,ÖZDEMİR Ömer Nanoteknoloji ve Nanonöroşirürji. , 2018, ss.264 - 272.
AMA KİRAZ M,ÇEVİK S,DEMIREL A,GERGİN Y,ÖZDEMİR Ö Nanoteknoloji ve Nanonöroşirürji. . 2018; 264 - 272.
Vancouver KİRAZ M,ÇEVİK S,DEMIREL A,GERGİN Y,ÖZDEMİR Ö Nanoteknoloji ve Nanonöroşirürji. . 2018; 264 - 272.
IEEE KİRAZ M,ÇEVİK S,DEMIREL A,GERGİN Y,ÖZDEMİR Ö "Nanoteknoloji ve Nanonöroşirürji." , ss.264 - 272, 2018.
ISNAD KİRAZ, Murat vd. "Nanoteknoloji ve Nanonöroşirürji". (2018), 264-272.
APA KİRAZ M, ÇEVİK S, DEMIREL A, GERGİN Y, ÖZDEMİR Ö (2018). Nanoteknoloji ve Nanonöroşirürji. Türk Nöroşirürji Dergsi, 28(3), 264 - 272.
Chicago KİRAZ Murat,ÇEVİK SERDAR,DEMIREL Altan,GERGİN Yusuf Emrah,ÖZDEMİR Ömer Nanoteknoloji ve Nanonöroşirürji. Türk Nöroşirürji Dergsi 28, no.3 (2018): 264 - 272.
MLA KİRAZ Murat,ÇEVİK SERDAR,DEMIREL Altan,GERGİN Yusuf Emrah,ÖZDEMİR Ömer Nanoteknoloji ve Nanonöroşirürji. Türk Nöroşirürji Dergsi, vol.28, no.3, 2018, ss.264 - 272.
AMA KİRAZ M,ÇEVİK S,DEMIREL A,GERGİN Y,ÖZDEMİR Ö Nanoteknoloji ve Nanonöroşirürji. Türk Nöroşirürji Dergsi. 2018; 28(3): 264 - 272.
Vancouver KİRAZ M,ÇEVİK S,DEMIREL A,GERGİN Y,ÖZDEMİR Ö Nanoteknoloji ve Nanonöroşirürji. Türk Nöroşirürji Dergsi. 2018; 28(3): 264 - 272.
IEEE KİRAZ M,ÇEVİK S,DEMIREL A,GERGİN Y,ÖZDEMİR Ö "Nanoteknoloji ve Nanonöroşirürji." Türk Nöroşirürji Dergsi, 28, ss.264 - 272, 2018.
ISNAD KİRAZ, Murat vd. "Nanoteknoloji ve Nanonöroşirürji". Türk Nöroşirürji Dergsi 28/3 (2018), 264-272.