Array Antenna Feeding Network Design for 5G MIMO Applications

Yıl: 2019 Cilt: 19 Sayı: 2 Sayfa Aralığı: 120 - 127 Metin Dili: İngilizce DOI: 10.26650/electrica.2019.19004 İndeks Tarihi: 02-01-2020

Array Antenna Feeding Network Design for 5G MIMO Applications

Öz:
Emerging smart antenna systems require different beam patterns of multiple antennas. Although adjustable phase shifters are mostly used in continuousbeam systems, the Butler matrix is used in switching-beam systems due to its low cost and easy fabrication. In this study, an antenna-array-feeding circuit based on the Butler matrix that can be used for Multiple Input Multiple Output applications is designed for 5G new radio. With the proposed switching system, the control of four beams can be achieved. The Butler circuit, designed to cover the 3.5–4.2 GHz 5G band, has a low complexity and is capable of meeting the need for high data throughput. A simulation of the circuit and circuit sub-elements designed using a 0.508-mm-thick substrate material is performed using the Computer Simulation Technology Microwave Studio computer-aided design tool. Furthermore, a prototype of the Butler circuit is fabricated, and the amplitude and phase variations at the output ports are measured. An average transmission loss of the feed circuit is measured as 1.5 dB, and when the length of the Phase Shifter in the circuit is set to λ/8, with a four-element linear array added to the output of the Butler circuit, the main beam is steered to ±15o and ±35o having maximum gain in the 6.39–8.77 dBi range.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • White paper, Spirent Communications, “TD-LTE and MIMO Beamforming: Principles and Test Challenges”, August 2012.
  • C. Kang, “MIMO beamforming and its impact on testing TD-LTE”, Microwave Journal, vol. 55, no. 2, 2012.
  • The International Telecommunication Union Radiocommunication (ITU-R), “IMT vision - Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond”, Rec. ITU-R M.2083-0, pp. 1-21, Sept. 2015.
  • Bilgi Teknolojileri ve İletişim Kurumu (BTK), “5G ve Dikey Sektörler Raporu”, Jan. 2018.
  • J. Blass, “Multidirectional antenna-A new approach to stacked beams”, IRE International Convention Record, New York, Amerika, 21-25 March 1966, pp. 48-50
  • S. Mosca, F. Bilotti, A. Toscano, L. Vegni, “A novel design method for Blass matrix beam-forming networks”, IEEE Trans. Antennas Propagation, vol. 50, no.2, pp. 225-232, Feb. 2002.
  • J. Nolen, “Synthesis of Multiple Beam Networks for Arbitrary Illuminations”, PhD Thesis, The Johns Hopkins University, Baltimore, USA, 1965.
  • T. Djerafi, N. J. G. Fonseca, K. Wu, “Broadband substrate integrated waveguide 4 × 4 Nolen matrix based on coupler delay compensation”, IEEE Trans Microw Theory Techn, vol. 59, no.7, pp. 1740-1745, July 2011.
  • J. Butler, R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas”, Electron Des, vol. 9, pp. 170-173, April 1961.
  • C. W. Wang, T. G. Ma, C. F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix”, IEEE Trans Microw Theory Techn, vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
  • T. H. Lin, S. K. Hsu, T. L. Wu, “Bandwidth enhancement of 4 × 4 Butler matrix using broadband forward-wave directional coupler and phase difference compensation”, IEEE Trans Microw Theory Techn, vol. 61, no. 12, pp. 4099-4109, 2013.
  • S. Karamzadeh, V. Rafii, M. Kartal, B. S. Virdee, “Compact and broadband 4 × 4 SIW Butler matrix with phase and magnitude error reduction”, IEEE Antennas Wireless Propag Lett, vol. 25, no. 12, pp. 772-774, 2015.
  • Y. S. Lin, J. H. Lee, “Miniature Butler matrix design using glass based thin-film integrated passive device technology for 2.5-GHz applications”, IEEE Trans Microw Theory Techn, vol. 61, no. 7, pp. 2594-2602, 2013.
  • H. N. Chu, T. G. Ma, “An extended 4 × 4 Butler matrix with enhanced beam controllability and widened spatial coverage”, IEEE Trans Microw Theory Techn, vol. 66, no. 3, pp. 1301-1311, March 2018.
  • N. A. Muhammad, S. K. A. Rahim, N. M. Jizat, T. A. Rahman, K. G. Tan, A. W. Reza, “Beam Forming Networks Using Reduced Size Butler Matrix”, Wireless Pers Commun., vol. 63, pp. 765-784, Oct. 2012.
  • T. K. G. Kwang, P. Gardner, “4 × 4 butler matrix beam forming network using novel reduced size branchline coupler”, in 31st European Microwave Conference, London, England, 24-26 Sept. 2001.
  • I. Sakagami, M. Haga, T. Munehiro, “Reduced branch-line coupler using eight two-step stubs”, IEE Proc-Microw Antennas Propagat, vol.164, no.6, pp. 455-460, Dec. 1999.
  • L. Yang, G. B. Giannakis, “Ultra-wideband communications - an idea whose time has come”, IEEE Signal Processing Magazine, vol. 21, no.6, pp. 26-54, Nov. 2004.
  • L. Chiu, Q. Xue, “Wideband parallel-strip 90° hybrid coupler with swap”, Electronics Letters, vol. 44, no. 11, pp. 687-688, May 2008.
  • J. Yao, C. Lee, S. Yeo, “Microstrip branch-line couplers for crossover application”, IEEE Trans Microw Theory Tech, vol. 59, no. 1, pp. 8792, Jan. 2011.
  • G. K. Pandey, H. S. Singh, P. K. Bharti, A. Pandey, M. K. Meshram, “High gain vivaldi antenna for radar and microwave ımaging applications”, Int Journal of Signal Processing Systems, vol. 3, no.1, pp. 35-39, June 2015.
  • G. Gopikrishnan, Z. Akhterand, M. J. Akhtar, “A novel corrugated four slot Vivaldi antenna loaded with metamaterial cells for microwave imaging”, in Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5-9 December 2016.
  • M. Abbak, M. N. Akıncı, M. Çayören, İ. Akduman, “Experimental microwave imaging with a novel corrugated Vivaldi antenna”, IEEE Trans. on Antennas and Propagat., vol. 65, no. 6, pp.3302-3307, June 2017. [CrossRef]
APA TOKAN N (2019). Array Antenna Feeding Network Design for 5G MIMO Applications. , 120 - 127. 10.26650/electrica.2019.19004
Chicago TOKAN Nurhan Türker Array Antenna Feeding Network Design for 5G MIMO Applications. (2019): 120 - 127. 10.26650/electrica.2019.19004
MLA TOKAN Nurhan Türker Array Antenna Feeding Network Design for 5G MIMO Applications. , 2019, ss.120 - 127. 10.26650/electrica.2019.19004
AMA TOKAN N Array Antenna Feeding Network Design for 5G MIMO Applications. . 2019; 120 - 127. 10.26650/electrica.2019.19004
Vancouver TOKAN N Array Antenna Feeding Network Design for 5G MIMO Applications. . 2019; 120 - 127. 10.26650/electrica.2019.19004
IEEE TOKAN N "Array Antenna Feeding Network Design for 5G MIMO Applications." , ss.120 - 127, 2019. 10.26650/electrica.2019.19004
ISNAD TOKAN, Nurhan Türker. "Array Antenna Feeding Network Design for 5G MIMO Applications". (2019), 120-127. https://doi.org/10.26650/electrica.2019.19004
APA TOKAN N (2019). Array Antenna Feeding Network Design for 5G MIMO Applications. Electrica, 19(2), 120 - 127. 10.26650/electrica.2019.19004
Chicago TOKAN Nurhan Türker Array Antenna Feeding Network Design for 5G MIMO Applications. Electrica 19, no.2 (2019): 120 - 127. 10.26650/electrica.2019.19004
MLA TOKAN Nurhan Türker Array Antenna Feeding Network Design for 5G MIMO Applications. Electrica, vol.19, no.2, 2019, ss.120 - 127. 10.26650/electrica.2019.19004
AMA TOKAN N Array Antenna Feeding Network Design for 5G MIMO Applications. Electrica. 2019; 19(2): 120 - 127. 10.26650/electrica.2019.19004
Vancouver TOKAN N Array Antenna Feeding Network Design for 5G MIMO Applications. Electrica. 2019; 19(2): 120 - 127. 10.26650/electrica.2019.19004
IEEE TOKAN N "Array Antenna Feeding Network Design for 5G MIMO Applications." Electrica, 19, ss.120 - 127, 2019. 10.26650/electrica.2019.19004
ISNAD TOKAN, Nurhan Türker. "Array Antenna Feeding Network Design for 5G MIMO Applications". Electrica 19/2 (2019), 120-127. https://doi.org/10.26650/electrica.2019.19004