Yıl: 2019 Cilt: 34 Sayı: 1 Sayfa Aralığı: 1 - 8 Metin Dili: İngilizce DOI: 10.5606/ArchRheumatol.2019.6835 İndeks Tarihi: 23-01-2020

Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model

Öz:
Objectives: This study aims to evaluate the antioxidant effects of epigallocatechin-3-gallate (EGCG) in a bleomycin (BLM)-induced sclerodermamodel.Materials and methods: Thirty-two healthy female Balb-c mice (6-8-week-old; weighing 22±5 g) were used in this study. The mice were randomlydivided into four groups: control (n=8), BLM (n=8), BLM+EGCG (n=8), and EGCG (n=8). Skin tissue specimens were collected at the end of theexperiments. Histopathological examinations of skin tissues were performed. Skin samples were assessed for total superoxide dismutase (SOD)activity and malondialdehyde (MDA) content. The phosphorylation of p-38 mitogen-activated protein kinase and Akt protein (the serine-threonineprotein kinase encoded by the AKT), as well as the nuclear factor-kappa B (NF-kB) levels, were analyzed by western blotting.Results: Epigallocatechin-3-gallate-treated groups were observed to have reduced connective tissue fibrosis in the dermis area using Masson’strichrome staining method. Pp-38 and NF-kB were found to decrease significantly in the BLM + EGCG group compared with the BLM group. Parallelto these findings, phosphorylated Akt protein was found to increase in the BLM + EGCG group compared with the BLM group. SOD activity wasincreased in the EGCG group and content of MDA level was decreased in EGCG groups.Conclusion: The results of the present study demonstrated that EGCG represses pp-38 and NF-kB signaling pathways, exerting a protective effectfor scleroderma through its anti-oxidative role.
Anahtar Kelime:

Konular: Romatoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007;117:557-67.
  • 2. Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011;8:42-54.
  • 3. Hunzelmann N, Genth E, Krieg T, Lehmacher W, Melchers I, Meurer M, et al. The registry of the German Network for Systemic Scleroderma: frequency of disease subsets and patterns of organ involvement. Rheumatology (Oxford) 2008;47:1185-92.
  • 4. Allanore Y, Dieude P, Boileau C. Genetic background of systemic sclerosis: autoimmune genes take centre stage. Rheumatology (Oxford) 2010;49:203-10.
  • 5. Mayes MD, Lacey JV Jr, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 2003;48:2246-55.
  • 6. Herrick AL, Matucci Cerinic M. The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis. Clin Exp Rheumatol 2001;19:4-8.
  • 7. Lundberg AC, Akesson A, Akesson B. Dietary intake and nutritional status in patients with systemic sclerosis. Ann Rheum Dis 1992;51:1143-8.
  • 8. Servettaz A, Goulvestre C, Kavian N, Nicco C, Guilpain P, Chéreau C, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J Immunol 2009;182:5855-64.
  • 9. Kawashiri SY, Ueki Y, Terada K, Yamasaki S, Aoyagi K, Kawakami A. Improvement of plasma endothelin-1 and nitric oxide in patients with systemic sclerosis by bosentan therapy. Rheumatol Int 2014;34:221-5.
  • 10. Abou-Raya A, Abou-Raya S, Helmii M. Statins as immunomodulators in systemic sclerosis. Ann N Y Acad Sci 2007;1110:670-80.
  • 11. Riccieri V, Spadaro A, Fuksa L, Firuzi O, Saso L, Valesini G. Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis. Clin Rheumatol 2008;27:225-30.
  • 12. Ogawa F, Shimizu K, Muroi E, Hara T, Sato S. Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin Rheumatol 2011;30:921-5.
  • 13. Umezawa H, Maeda K, Takeuchi T, Okami Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 1966;19:200-9.
  • 14. Yamamoto T, Eckes B, Krieg T. Bleomycin increases steady-state levels of type I collagen, fibronectin and decorin mRNAs in human skin fibroblasts. Arch Dermatol Res 2000;292:556-61.
  • 15. Clark JG, Starcher BC, Uitto J. Bleomycin-induced synthesis of type I procollagen by human lung and skin fibroblasts in culture. Biochim Biophys Acta 1980;631:359-70.
  • 16. Yamamoto T, Kuroda M, Nishioka K. Animal model of sclerotic skin. III: Histopathological comparison of bleomycin-induced scleroderma in various mice strains. Arch Dermatol Res 2000;292:535-41.
  • 17. Yamamoto T, Nishioka K. Animal model of sclerotic skin. IV: induction of dermal sclerosis by bleomycin is T cell independent. J Invest Dermatol 2001;117:999-1001.
  • 18. Yamamoto T, Nishioka K. Animal model of sclerotic skin. V: Increased expression of alpha-smooth muscle actin in fibroblastic cells in bleomycin-induced scleroderma. Clin Immunol 2002;102:77-83.
  • 19. Yamamoto T, Nishioka K. Animal model of sclerotic skin. VI: Evaluation of bleomycin-induced skin sclerosis in nude mice. Arch Dermatol Res 2004;295:453-6.
  • 20. Yamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 1999;112:456-62.
  • 21. Yamamoto T, Takahashi Y, Takagawa S, Katayama I, Nishioka K. Animal model of sclerotic skin. II. Bleomycin induced scleroderma in genetically mast cell deficient WBB6F1-W/W(V) mice. J Rheumatol 1999;26:2628-34.
  • 22. Avouac J, Elhai M, Allanore Y. Experimental models of dermal fibrosis and systemic sclerosis. Joint Bone Spine 2013;80:23-8.
  • 23. Rice-Evans CA, Miller NJ, Paganga G. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996;20:933-56.
  • 24. Hu C, Kitts DD. Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems in vitro. Mol Cell Biochem 2001;218:147-55.
  • 25. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, et al. Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3- gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 2002;292:94-101.
  • 26. Badea I, Taylor M, Rosenberg A, Foldvari M. Pathogenesis and therapeutic approaches for improved topical treatment in localized scleroderma and systemic sclerosis. Rheumatology (Oxford) 2009;48:213-21.
  • 27. Gabrielli A, Svegliati S, Moroncini G, Amico D. New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 2012;6:87-95.
  • 28. Distler JH, Jüngel A, Pileckyte M, Zwerina J, Michel BA, Gay RE, et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum 2007;56:4203-15.
  • 29. Bozkurt M, Dag S, Oktayoglu P, Em S, Yuksel H, Caglayan M, et al. Serum prolidase enzyme activity and oxidative status in patients with scleroderma. Acta Medica Mediterranea 2014;30:127-32.
  • 30. Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV. Oxidative stress and the pathogenesis of scleroderma: the Murrell's hypothesis revisited. Semin Immunopathol 2008;30:329-37.
  • 31. Roh E, Kim JE, Kwon JY, Park JS, Bode AM, Dong Z, et al. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit Rev Food Sci Nutr 2017;57:1631-7.
  • 32. OyetakinWhite P, Tribout H, Baron E. Protective mechanisms of green tea polyphenols in skin. Oxid Med Cell Longev 2012;2012:560682.
  • 33. Santamarina AB, Carvalho-Silva M, Gomes LM, Okuda MH, Santana AA, Streck EL, et al. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. J Nutr Biochem 2015;26:1348-56.
  • 34. Imai K, Suga K, Nakachi K. Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 1997;26:769-75.
  • 35. Shrubsole MJ, Lu W, Chen Z, Shu XO, Zheng Y, Dai Q, et al. Drinking green tea modestly reduces breast cancer risk. J Nutr 2009;139:310-6.
  • 36. Wu AH, Yu MC, Tseng CC, Hankin J, Pike MC. Green tea and risk of breast cancer in Asian Americans. Int J Cancer 2003;106:574-9.
  • 37. Guo Y, Zhi F, Chen P, Zhao K, Xiang H, Mao Q, et al. Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017;96:6426.
  • 38. Yamamoto T. Animal model of sclerotic skin induced by bleomycin: a clue to the pathogenesis of and therapy for scleroderma? Clin Immunol 2002;102:209-16.
  • 39. Sriram N, Kalayarasan S, Sudhandiran G. Enhancement of antioxidant defense system by epigallocatechin-3-gallate during bleomycin induced experimental pulmonary fibrosis. Biol Pharm Bull 2008;31:1306-11.
  • 40. Tian L, Chen J, Chen M, Gui C, Zhong CQ, Hong L, et al. The p38 pathway regulates oxidative stress tolerance by phosphorylation of mitochondrial protein IscU. J Biol Chem 2014;289:31856-65.
  • 41. Liang Y, Li J, Lin Q, Huang P, Zhang L, Wu W, et al. Research Progress on Signaling Pathway-Associated Oxidative Stress in Endothelial Cells. Oxid Med Cell Longev 2017;2017:7156941.
  • 42. Bruckdorfer KR. Antioxidants and CVD. Proc Nutr Soc 2008;67:214-22.
  • 43. Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets 2007;7:135-44.
  • 44. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005;15:316-28.
  • 45. Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 2008;269:269-80.
  • 46. Stangl V, Dreger H, Stangl K, Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 2007;73:348-58.
  • 47. Yang CS, Lambert JD, Hou Z, Ju J, Lu G, Hao X. Molecular targets for the cancer preventive activity of tea polyphenols. Mol Carcinog 2006;45:431-5.
  • 48. Yasuda Y, Shimizu M, Sakai H, Iwasa J, Kubota M, Adachi S, et al. (-)-Epigallocatechin gallate prevents carbon tetrachloride-induced rat hepatic fibrosis by inhibiting the expression of the PDGFRbeta and IGF- 1R. Chem Biol Interact 2009;182:159-64.
  • 49. Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, Sata M. Green tea polyphenol epigallocatechin-3- gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. J Hepatol 2004;40:52-9.
  • 50. Sun SC. The non-canonical NF-kB pathway in immunity and inflammation. Nat Rev Immunol 2017;17:545-58.
  • 51. Dooley A, Shi-Wen X, Aden N, Tranah T, Desai N, Denton CP, et al. Modulation of collagen type I, fibronectin and dermal fibroblast function and activity, in systemic sclerosis by the antioxidant epigallocatechin- 3-gallate. Rheumatology (Oxford) 2010;49:2024-36.
  • 52. Kim J, Hwang JS, Cho YK, Han Y, Jeon YJ, Yang KH. Protective effects of (-)-epigallocatechin-3-gallate on UVA- and UVB-induced skin damage. Skin Pharmacol Appl Skin Physiol 2001;14:11-9.
  • 53. Kocak A, Harmancı D, Birlik M, Sarıo¤lu S, Yılmaz O, Cavdar Z, et al. Effects of epigallocatechin-3-gallate (EGCG) on a scleroderma model of fibrosis. Turk J Biochem 2018. [Access: February 8, 2018]
APA Koçak A, HARMANCİ D, Cavdar Z, ural c, BİRLİK M, Sarioglu S, Yilmaz O, GÜNER AKDOĞAN G (2019). Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. , 1 - 8. 10.5606/ArchRheumatol.2019.6835
Chicago Koçak Ayşe,HARMANCİ Duygu,Cavdar Zahide,ural cemre,BİRLİK Merih,Sarioglu Sulen,Yilmaz Osman,GÜNER AKDOĞAN Gül Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. (2019): 1 - 8. 10.5606/ArchRheumatol.2019.6835
MLA Koçak Ayşe,HARMANCİ Duygu,Cavdar Zahide,ural cemre,BİRLİK Merih,Sarioglu Sulen,Yilmaz Osman,GÜNER AKDOĞAN Gül Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. , 2019, ss.1 - 8. 10.5606/ArchRheumatol.2019.6835
AMA Koçak A,HARMANCİ D,Cavdar Z,ural c,BİRLİK M,Sarioglu S,Yilmaz O,GÜNER AKDOĞAN G Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. . 2019; 1 - 8. 10.5606/ArchRheumatol.2019.6835
Vancouver Koçak A,HARMANCİ D,Cavdar Z,ural c,BİRLİK M,Sarioglu S,Yilmaz O,GÜNER AKDOĞAN G Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. . 2019; 1 - 8. 10.5606/ArchRheumatol.2019.6835
IEEE Koçak A,HARMANCİ D,Cavdar Z,ural c,BİRLİK M,Sarioglu S,Yilmaz O,GÜNER AKDOĞAN G "Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model." , ss.1 - 8, 2019. 10.5606/ArchRheumatol.2019.6835
ISNAD Koçak, Ayşe vd. "Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model". (2019), 1-8. https://doi.org/10.5606/ArchRheumatol.2019.6835
APA Koçak A, HARMANCİ D, Cavdar Z, ural c, BİRLİK M, Sarioglu S, Yilmaz O, GÜNER AKDOĞAN G (2019). Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. Archives of Rheumatology, 34(1), 1 - 8. 10.5606/ArchRheumatol.2019.6835
Chicago Koçak Ayşe,HARMANCİ Duygu,Cavdar Zahide,ural cemre,BİRLİK Merih,Sarioglu Sulen,Yilmaz Osman,GÜNER AKDOĞAN Gül Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. Archives of Rheumatology 34, no.1 (2019): 1 - 8. 10.5606/ArchRheumatol.2019.6835
MLA Koçak Ayşe,HARMANCİ Duygu,Cavdar Zahide,ural cemre,BİRLİK Merih,Sarioglu Sulen,Yilmaz Osman,GÜNER AKDOĞAN Gül Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. Archives of Rheumatology, vol.34, no.1, 2019, ss.1 - 8. 10.5606/ArchRheumatol.2019.6835
AMA Koçak A,HARMANCİ D,Cavdar Z,ural c,BİRLİK M,Sarioglu S,Yilmaz O,GÜNER AKDOĞAN G Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. Archives of Rheumatology. 2019; 34(1): 1 - 8. 10.5606/ArchRheumatol.2019.6835
Vancouver Koçak A,HARMANCİ D,Cavdar Z,ural c,BİRLİK M,Sarioglu S,Yilmaz O,GÜNER AKDOĞAN G Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model. Archives of Rheumatology. 2019; 34(1): 1 - 8. 10.5606/ArchRheumatol.2019.6835
IEEE Koçak A,HARMANCİ D,Cavdar Z,ural c,BİRLİK M,Sarioglu S,Yilmaz O,GÜNER AKDOĞAN G "Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model." Archives of Rheumatology, 34, ss.1 - 8, 2019. 10.5606/ArchRheumatol.2019.6835
ISNAD Koçak, Ayşe vd. "Antioxidant Effect of Epigallocatechin-3-Gallate in a Bleomycin-Induced Scleroderma Model". Archives of Rheumatology 34/1 (2019), 1-8. https://doi.org/10.5606/ArchRheumatol.2019.6835