Yıl: 2019 Cilt: 9 Sayı: 1 Sayfa Aralığı: 16 - 25 Metin Dili: Türkçe DOI: 10.17714/gumusfenbil.381050 İndeks Tarihi: 24-10-2019

Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi

Öz:
Bu çalışmada ağırlıkça %5 ile 50 arasında farklı oranlarda çinko içeren on adet ikili alüminyum-çinko alaşımı kokilkalıba döküm yöntemiyle üretildi. Üretilen alaşımların içyapıları ışık mikroskobunda incelendi. Alaşımların içyapısındabulunan fazları belirlemek için X-ışını kırınım (XRD) çalışmaları yapıldı. Elde edilen bulgular % 15 çinko oranınakadar alaşımların içyapısının alüminyumca zengin α fazından oluştuğunu ve alaşımdaki çinkonun bu faz içindetamamen çözündüğünü göstermektedir. Çinko oranı % 15’i aştığında α fazının yanı sıra yapıda çinkoca zengin η fazınınoluşmaya başladığı, %25’i aşması durumunda ise α fazının dendritik bir şekilde büyüdüğü görüldü. Alaşımların sertlikdeğerlerinin artan çinko oranı ile sürekli arttığı, çekme ve basma dayanımı değerlerinin ise %30 çinko oranına kadararttığı bu orandan sonra azaldığı görüldü. Artan çinko oranı ile alaşımların içyapısında meydana gelen değişimlerkatılaşma davranışlarına, mekanik özelliklerinde meydana gelen değişimler ise yapısal değişimlere dayandırılarakirdelendi.
Anahtar Kelime:

Konular: Tarımsal Ekonomi ve Politika Ziraat Mühendisliği Bitki Bilimleri

Effect of Zinc Content on the Microstructure and Mechanical Properties of the Al-(5-50)Zn Alloys

Öz:
In this study, ten binary aluminum-zinc alloys containing zinc in different ratios between 5 and 50% by weight were produced by permanent mold casting method. The microstructures of the produced alloys were examined in light microscope. X-ray diffraction (XRD) studies were carried out to determine the phases in the microstructure of the alloys. The findings show that the microstructure of the alloys up to 15% zinc is composed of aluminum-rich α phase and the zinc in the alloy completely dissolves in this phase. It was also showed that when the zinc content exceeds 15%, besides the α-phase, the zinc-rich η phase begins to form, and when the zinc content exceeds 25%, the α-phase grows dendritically. The hardness, tensile, and compression strength values of the alloys increased continuously with increasing zinc content but after the % 30 zinc content tensile and compression strength values decreased. The changes in the microstructure and mechanical properties of the alloys were discussed based on their solidification behaviors and structural changes.
Anahtar Kelime:

Konular: Tarımsal Ekonomi ve Politika Ziraat Mühendisliği Bitki Bilimleri
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abbaschian, R., Abbaschian, L. ve Reed-Hill, R.E., 2008. Physical Metallurgy Principles, Cengage Learning, Stanford.
  • Alemdağ, Y. ve Beder, M., 2014. Microstructural, mechanical and tribological properties of Al-7Si-(0-5) Zn alloys, Materials and Design, 63, 159-167.
  • Alemdağ, Y. ve Beder, M., 2015. Dry Sliding Wear Properties of Al-7Si-4Zn-(0-5) Cu Alloys. Journal of The Balkan Tribological Association, 21(1), 154-165.
  • Alhawari, K.S., Omar, M.Z., Ghazalı, M.J., Salleh, M.S. ve Mohammed, M.N., 2017. Microstructural evolution during semi solid processing of Al−Si−Cu alloy with different Mg contents. Transactions of Nonferrous Metals Society of China, 27,1483-1497.
  • Allameh, S.H. ve Emamy, M., 2017. The Effect of Ca Content on the Microstructure, Hardness and Tensile Properties of AZ81 Mg Cast Alloy. Journal of Materials Engineering and Performance, 26(5), 2151-2161.
  • Altenpohl, D.G., 1998. Aluminum Technology, Applications, and Environment. The Aluminum Association Inc. and TMS, Washington.
  • ASM International Handbook Committee, 1992. Properties and selection: nonferrous alloys and special purpose materials. ASM International, Materials Park, OH.
  • Auer, H. ve Mann, K.E., 1936. Magnetic Investigation of Zinc Aluminum System. Zeitschrift für Metallkunde, 28 (10), 323- 326.
  • Avner, S.H., 1997, Introduction to physical metallurgy. McGraw Hill, India,
  • Bayraktar, Ş., Hekimoğlu A.P., Turgut Y. ve Hacıosmanoğlu M., 2017a. Effect of Different Cutting Tools on Machinability of The Al-5Zn Alloy. 2thInternational Symposium on Industrial Design Engineering-ISIDE, 13-15 Eylül 2017, Nevşehir, Türkiye, s.134-137.
  • Bayraktar, Ş., Hekimoğlu A.P., Turgut Y. ve Hacıosmanoğlu M., 2017b. A Performance Comparison Study of Uncoated and TiAlN Coated Carbide End Mill on Machining of the Al-35Zn Alloy. 9thInternational Conference on Tribology (BalkanTRib’17), 13-15 Eylül 2017, Nevşehir, Türkiye, s.490-496.
  • Bishop, R.J. ve Smallman, R.E., 1999. Modern Physical Metallurgy and Materials Engineering, Butterworth-Heinemann, Oxford.
  • Dursun T. ve Soutis C., 2014. Recent developments in advanced aircraft aluminium alloys. Materials and Design, 56, 862–871.
  • Gervais, E., Barnhurst, R.J. ve Loong, C.A., 1985. An Analysis of Selected Properties of ZA Alloys. Journal of Metals, 37 (11), 43-47.
  • Hatch, J.E., 1984. Aluminum: Properties and Physical Metallurgy. American Society for Metals, Ohio.
  • Kaufman, J.G. ve Rooy, E.L., 2004. Aluminum Alloy Castings: Properties, Processes, and Applications, ASM International.
  • Kuznetsov, G.M., Barsukov, A.D. ve Krivosheeva, G.B., 1986. Calculation of Phase Equilibria of The Al-Zn System. Russian Metallurgy, 5,195-198.
  • Lee, B.H., Kim, S.H., Park, J.H., Kim, H.W. ve Lee, J.C., 2016. Role of Mg in simultaneously improving the strength and ductility of Al–Mg alloys. Materials Science & Engineering A, 657,115-122.
  • Lloyd, D.J., 2003. The scaling of the tensile ductile fracture strain with yield strength in Al alloys. Scripta Materialia, 48 (4),341- 344.
  • Miannay, D., Costa, P., François, D. ve Pineau, A., 2000. Advances in Mechanical Behaviour, Plasticity and Damage. Elsevier Science Ltd.,Oxford.
  • Mondolfo, L.F., 1976. Aluminum Alloys: Structure and Properties, Butterworth & Co Publishers Ltd., London.
  • Murthy, V.S.R., 2003. Structure and Properties of Engineering Materials, McGraw-Hill Publishing Company Limited, Yeni Delhi.
  • Presnyakov, A.A., Gorban, Y.A. ve Chrevyakova V.V., 1961. The Aluminum-Zinc Phase Diagram. Journal of Physical Chemistry, 35,632-633.
  • Rana, R. ve Singh, S. B., 2016. Automotive Steels: Design, Metallurgy, Processing and Applications, Woodhead Publishing, London.
  • Remøea, M.S., Marthinsena, K., Westermanna, I., Pedersenb, K., Røysetc, J. ve Marioarab, C., 2017. The effect of alloying elements on the ductility of Al-Mg-Si alloys. Materials Science & Engineering A, 693,60-72.
  • Savaşkan, T. ve Hekimoğlu, A.P., 2014a. Microstructure and mechanical properties of Zn-15Al-based ternary and quaternary alloys. Materials Science & Engineering A, 603,52-57.
  • Savaşkan, T. ve Hekimoğlu, A.P., 2014b. Structure and mechanical properties of Zn- (5-25) Al alloys. International Journal of Materials Research, 105(11),1084-1089.
  • Savaşkan, T. ve Hekimoğlu, A.P., 2016. Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys. International Journal of Materials Research, 107(7), 646- 652.
  • Savaşkan, T., 2017. Malzeme Bilimi ve Malzeme Muayenesi: Papatya Yayınevi, İstanbul.
  • Savaşkan, T., Bican, O. ve Alemdağ, Y., 2009. Developing aluminium-zinc-based a new alloy for tribological applications. Journal of Materials Science, 44(8),1969-1976.
  • Savaşkan, T., Hekimoğlu, A.P. ve Pürçek, G., 2004. Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys. Tribology International, 37(1), 45- 50.
  • Savaşkan, T., Pürçek, G. ve Hekimoğlu, A.P., 2003. Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys. Tribology Letters, 15(3), 257-263.
  • Savaşkan, T., Torul, O. ve Çuvalcı, H., 1988. Çinko-alüminyum alaşımlarının içyapı ve mekanik özelliklerinin incelenmesi, 5. Metalurji Kongresi, Kasım 1988, Ankara, Türkiye, s.784-799.
  • Shabestari, S.G. ve Moemeni, H., 2004. Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. Journal of Materials Processing Technology, 153-154, 193-198.
  • Tien, J. ve Ansell, G. S., 1976. Alloy and Microstructural Design, Academic Press, London.
  • Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T. ve Lowe, T.C., 2002. Paradox of strength and ductility in metals processed by severe plastic deformation. Journal of Materials, 17(1), 5-8.
  • Wanga, X., Guob, M., Zhangb J. ve Zhuangb L., 2016. Effect of Zn addition on the microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloys. Materials Science & Engineering A, 677, 522-533.
APA Hekimoğlu A, TURAN Y (2019). Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. , 16 - 25. 10.17714/gumusfenbil.381050
Chicago Hekimoğlu Ali Paşa,TURAN YUNUS EMRE Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. (2019): 16 - 25. 10.17714/gumusfenbil.381050
MLA Hekimoğlu Ali Paşa,TURAN YUNUS EMRE Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. , 2019, ss.16 - 25. 10.17714/gumusfenbil.381050
AMA Hekimoğlu A,TURAN Y Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. . 2019; 16 - 25. 10.17714/gumusfenbil.381050
Vancouver Hekimoğlu A,TURAN Y Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. . 2019; 16 - 25. 10.17714/gumusfenbil.381050
IEEE Hekimoğlu A,TURAN Y "Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi." , ss.16 - 25, 2019. 10.17714/gumusfenbil.381050
ISNAD Hekimoğlu, Ali Paşa - TURAN, YUNUS EMRE. "Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi". (2019), 16-25. https://doi.org/10.17714/gumusfenbil.381050
APA Hekimoğlu A, TURAN Y (2019). Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(1), 16 - 25. 10.17714/gumusfenbil.381050
Chicago Hekimoğlu Ali Paşa,TURAN YUNUS EMRE Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi 9, no.1 (2019): 16 - 25. 10.17714/gumusfenbil.381050
MLA Hekimoğlu Ali Paşa,TURAN YUNUS EMRE Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.9, no.1, 2019, ss.16 - 25. 10.17714/gumusfenbil.381050
AMA Hekimoğlu A,TURAN Y Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2019; 9(1): 16 - 25. 10.17714/gumusfenbil.381050
Vancouver Hekimoğlu A,TURAN Y Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2019; 9(1): 16 - 25. 10.17714/gumusfenbil.381050
IEEE Hekimoğlu A,TURAN Y "Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi." Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9, ss.16 - 25, 2019. 10.17714/gumusfenbil.381050
ISNAD Hekimoğlu, Ali Paşa - TURAN, YUNUS EMRE. "Çinko Oranının Al-(5-50)Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi". Gümüşhane Üniversitesi Fen Bilimleri Dergisi 9/1 (2019), 16-25. https://doi.org/10.17714/gumusfenbil.381050