Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure

Yıl: 2018 Cilt: 22 Sayı: 5 Sayfa Aralığı: 1211 - 1220 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.341709 İndeks Tarihi: 04-11-2019

Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure

Öz:
This study aims to find out the crucial variations in the mechanical performance and characterization of Bi-2223 superconducting compounds with the diffusion annealing temperatures interval 650 °C-850 °C by means of Vickers hardness measurements exerted at the different applied indentation test loads (0.245 N-2.940 N) and derived theoretical findings. All the experimental results and theoretical evidences showed that the mechanical characterization and performances improve with the increment in the diffusion annealing temperature up to 700 °C due to the development in structural properties. Namely, the optimum annealing temperature of 700 °C resulting in the optimum penetration of Ni impurities into both the superconducting grains and over the grain boundaries develops the crystallinity of Bi-2223 crystal structure. In other words, the surface energy related to the crack-initiating omnipresent flaws, void/crack propagation and dislocation movement reduces due to the augmented critical stress value. In this respect, the diffusion annealing temperature of 700 °C develops the mechanical durability, stiffness, ideal fracture and flexural strength. However, after the certain diffusion annealing temperature value of 700 °C, the crystallinity tends to degrade considerably and in fact dwelling in the worst crystal structure for 850 °C annealing temperature. Accordingly, the initial crack growths, sizes of crack-producing flaws, void/crack propagation and dislocation movement in the copper-oxide consecutively stacked layers reach much more rapidly to the critical speeds due to the increased stress amplification so that the Bi-2223 compound with the augmented brittle behavior breaks at even lower test load. Moreover, it is observed that the presence of optimum nickel impurities in the crystal structure strengthens the standard indentation size effect behavior.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • H.K. Onnes, “Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V.” The Disappearance of the resistance of mercury, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14 (2011) 113-115
  • V.L. Ginzburg, E.A. Andryushin, “Superconductivity”, Revised ed. World Scientific Pub. Co. Inc., 2004.
  • S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, “Joining of Bi-2212 high-T-c superconductors and metals using indium solders”, Physica C 463–465 (2007) 464– 467.
  • M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, “6.4 MVA resitive fault current limiter based on Bi-2212 superconductor”, Physica C 372 (2002) 1657–1663.
  • J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, “A resistive fault current limiter based on high temperature superconductors”, Appl. Supercond. 3 (1995) 469–482.
  • T.A. Coombs, “A finite element model of magnetization of superconducting bulks using a solid-state flux pump”, IEEE T. Appl. Supercond. 21 (2011) 3581–3586.
  • F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, “Superconductor bearings, flywheels and transportation”, Supercond. Sci. Technol. 25 (2012) 014007.
  • H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, “Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded topseeded melt growth method”, J. Appl. Phys. 111 (2012) 103910.
  • K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, “High and uniform critical current density for large-size YBa2Cu3O7−δ single crystals”, Curr. Appl. Phys. 11 (2011) 1020–1023
  • W. Buckel, R. Kleiner, “Superconductivity: Fundamentals and Applications”, 2nd ed., Wiley-VCH Verlag, Weinheim, (2004)
  • G. Yildirim, “Determination of Optimum Diffusion Annealing Temperature for Au Surface-layered Bi-2212 Ceramics and Dependence of Transition Temperatures on Disorders”, J. Alloy. Compd. 699 (2017) 247–255.
  • B. Batlogg, “Cuprate Superconductors: Science beyond High Tc”, Solid State Commun. 107 (1998) 639–647.
  • M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, “Role of Diffusion-Annealing Time on the Superconducting, Microstructural and Mechanical Properties of Cu-Diffused Bulk MgB2 Superconductor”, J. Mater. Sci: Mater. El. 24 (2013) 352–361.
  • H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, “Microstructure and Jc improvements in multifilamentary Bi- 2212/Ag wires for high field magnet applications”, AIP Conference Proceedings, 986 (2008) 423–430.
  • K. Koyama, S. Kanno, S. Noguchi, “Electrical, Magnetic and superconducting properties of the quenched Bi2Sr2Ca1- XNdXCu2O8+y system”, Jpn. J. Appl. Phys. 29 (1990) L53–L56.
  • G. Yildirim, “Beginning Point of Metal to Insulator Transition for Bi-2223 Superconducting Matrix Doped with Eu Nanoparticles”, J. Alloy. Compd. 578 (2013) 526–535.
  • Y. Zalaoglu, G. Yildirim, H. Buyukuslu, N.K. Saritekin, A. Varilci, C. Terzioglu, O. Gorur, “Important Defeats on Pinning of 2D Pancake Vortices in Highly Anisotropic Bi-2212 Superconducting Matrix with Homovalent Bi/La Substitution”, J. Alloy. Compd. 631 (2015) 111–119.
  • N.K. Saritekin, H. Bilge, M.F. Kahraman, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, “Improvement of Mechanical Characteristics and Performances with Ni Diffusion Mechanism Throughout Bi-2223 Superconducting Matrix”, AIP Conference Proceedings 1722 (2016) 140002.
  • N.K. Saritekin, M.F. Kahraman, H. Bilge, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, “Effect of Ni Diffusion Annealing Temperature on Crucial Characterization of Bi-2223 Superconducting System”, AIP Conference Proceedings, 1722 (2016) 140007.
  • T.P. Sheahen, “Introduction to hightemperature superconductivity”, 1st ed., Kluwer Academic Publishers, New York, 2002.
  • V.S. Bobrov, “Deformation, structure and properties of ceramics and crystals of high- Tc superconductors”, Mat. Sci. Eng. AStruct. 164 (1993) 146–152.
  • Y. Zalaoglu , F. Karaboga, C. Terzioglu, G. Yildirim, “Improvement of mechanical performances and characteristics of bulk Bi- 2212 materials exposed to Au diffusion and stabilization of durable tetragonal phase by Au”, Ceram. Int. 43 (2017) 6836–6844.
  • S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, “Effect of zirconium diffusion on the microstructural and supercnducting properties of YBa2Cu3O7-δ superconductor”, J. Alloy. Compd. 540 (2012) 260–266.
  • J. Gong, J. Wu, Z. Guan, “Examination of the indentation size effect in low-load Vickers hardness testing of ceramics”, J. Eur. Ceram. Soc. 19 (1999) 2625–2631.
  • R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, “Charge carrier localization and metal to insulator transition in cerium substituted (Bi,Pb)-2212 superconductor”, J. Alloy. Compd. 493 (2010) 11–16.
  • T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, “Influence of fluorine doping on structural, electrical and optical properties of spray pyrolysis ZnS films”, Thin Solid Films 516 (2008) 2913–2916.
  • H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, “A new high-Tc oxide superconductor without a rare-earth element”, Jpn. J. Appl. Phys. 27 (1988) L209 – L210.
  • G.W. Michel, M. Herviev, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveav, “Superconductivity in the Bi-Sr- Cu-O System”, Z. Phys. B 68 (1987) 421– 423.
  • A. Junod, in: D.M. Ginsberg (Ed.), “Physical Properties of High Temperature Superconductors”, World Scientific, Singapore, 1990.
  • L. Zhou, P. Zhang, P. Ji, K. Wang, X. Wu, “The properties of YBCO superconductors prepared by a new approach-the powder melting process”, Supercond. Sci. Technol. 3 (1990) 490–492.
  • S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. Van Dover, G.W. Kammlott, R.A. Fasrnacht, H.D. Keith, “High critical currents in Y-Ba-Cu-O superconductors”, Appl. Phys. Lett. 52 (1988) 2074–2076.
  • K. Salama, V. Selymanickam, L. Gao, K. Sun, “High-current density in bulk YBa2Cu3OX superconductor”, Appl. Phys. Lett. 54 (1989) 2352–2354.
  • T. Egi, J.G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, “High-current density of Nd(Ba,Nd)2Cu3O7-X single-crystal”, Appl. Phys. Lett. 67 (1995) 2406–2408
  • Jr. W.D. Callister, D.G. Rethwisch, “Materials Science and Engineering: An Introduction”, 9th ed., Wiley Binder Version, USA, 2013.
APA YILDIRIM G, TURGAY T (2018). Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. , 1211 - 1220. 10.16984/saufenbilder.341709
Chicago YILDIRIM Gürcan,TURGAY Tahsin Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. (2018): 1211 - 1220. 10.16984/saufenbilder.341709
MLA YILDIRIM Gürcan,TURGAY Tahsin Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. , 2018, ss.1211 - 1220. 10.16984/saufenbilder.341709
AMA YILDIRIM G,TURGAY T Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. . 2018; 1211 - 1220. 10.16984/saufenbilder.341709
Vancouver YILDIRIM G,TURGAY T Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. . 2018; 1211 - 1220. 10.16984/saufenbilder.341709
IEEE YILDIRIM G,TURGAY T "Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure." , ss.1211 - 1220, 2018. 10.16984/saufenbilder.341709
ISNAD YILDIRIM, Gürcan - TURGAY, Tahsin. "Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure". (2018), 1211-1220. https://doi.org/10.16984/saufenbilder.341709
APA YILDIRIM G, TURGAY T (2018). Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(5), 1211 - 1220. 10.16984/saufenbilder.341709
Chicago YILDIRIM Gürcan,TURGAY Tahsin Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no.5 (2018): 1211 - 1220. 10.16984/saufenbilder.341709
MLA YILDIRIM Gürcan,TURGAY Tahsin Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.22, no.5, 2018, ss.1211 - 1220. 10.16984/saufenbilder.341709
AMA YILDIRIM G,TURGAY T Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 22(5): 1211 - 1220. 10.16984/saufenbilder.341709
Vancouver YILDIRIM G,TURGAY T Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 22(5): 1211 - 1220. 10.16984/saufenbilder.341709
IEEE YILDIRIM G,TURGAY T "Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, ss.1211 - 1220, 2018. 10.16984/saufenbilder.341709
ISNAD YILDIRIM, Gürcan - TURGAY, Tahsin. "Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/5 (2018), 1211-1220. https://doi.org/10.16984/saufenbilder.341709